Low-Power, Digital Temperature Sensor with Two-Wire Interface in WCSP

Check for Samples: TMP103

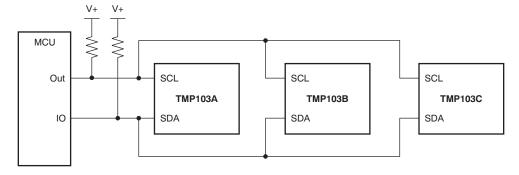
FEATURES

- Multiple Device Access (MDA):
 - Global Read/Write Operations
- I²C[™]-/ SMBus[™]-Compatible Interface
- · Resolution: 8 Bits
- Accuracy: ±1°C Typ (–10°C to +100°C)
- · Low Quiescent Current:
 - 3µA Active Io at 0.25Hz
 - 1µA Shutdown
- Supply Range: 1.4V to 3.6V
- Digital Output
- Package: 4-Ball WCSP (DSBGA)

APPLICATIONS

- Handsets
- Notebooks

DESCRIPTION


The TMP103 is a digital output temperature sensor in a four-ball wafer chip-scale package (WCSP). The TMP103 is capable of reading temperatures to a resolution of 1°C.

The TMP103 features a two-wire interface that is compatible with both I²C and SMBus interfaces. In addition, the interface supports multiple device access (MDA) commands that allow the master to communicate with multiple devices on the bus simultaneously, eliminating the need to send individual commands to each TMP103 on the bus.

Up to eight TMP103s can be tied together in parallel and easily read by the host. The TMP103 is especially ideal for space-constrained, power-sensitive applications with multiple temperature measurement zones that must be monitored.

The TMP103 is specified for operation over a temperature range of –40°C to +125°C.

TYPICAL APPLICATION

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SMBus is a trademark of Intel.

I²C is a trademark of NXP Semiconductors.

All other trademarks are the property of their respective owners.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION (1)

PRODUCT	ADDRESS	PACKAGE-LEAD	PACKAGE DESIGNATOR	PACKAGE MARKING	ORDERING NUMBER
TMP103A	1110000	DSBGA-4	YFF	TA	TMP103AYFFR
TIVIPTUSA	1110000	DSBGA-4	ĭFF	IA	TMP103AYFFT
TMP103B	1110001	DSBGA-4	YFF	ТВ	TMP103BYFFR
TIVIF 103B	1110001	DSBGA-4	IFF	16	TMP103BYFFT
TMP103C	1110010	DSBGA-4	YFF	TC	TMP103CYFFR
11011 1030	1110010	DODOA-4		10	TMP103CYFFT
TMP103D	1110011	DSBGA-4	YFF	TD	TMP103DYFFR
TIVII 103D	1110011	DODOA-4		10	TMP103DYFFT
TMP103E	1110100	DSBGA-4	YFF	TE	TMP103EYFFR
TIVII TOOL	1110100	DODOA		16	TMP103EYFFT
TMP103F	1110101	DSBGA-4	YFF	TF	TMP103FYFFR
11011 1031	1110101	DODOA-4	111	11	TMP103FYFFT
TMP103G	1110110	DSBGA-4	YFF	TG	TMP103GYFFR
11011 1030	1110110	D0D0A-4	111	10	TMP103GYFFT
TMP103H	1110111	DSBGA-4	YFF	TH	TMP103HYFFR
11011 10011	1110111	DODOX-4	111	111	TMP103HYFFT

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device prodict folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS(1)

		TMP103	UNIT
Supply Voltage		3.6	V
Input Voltage (2)		-0.3 to (V+) + 0.3	V
Operating Temp	erature	-55 to +150	°C
Storage Temperature		-60 to +150	°C
Junction Temper	rature	+150	°C
	Human Body Model (HBM)	2000	V
ESD Rating	Charged Device Model (CDM)	1000	V
	Machine Model (MM)	200	V

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not supported.

(2) Input voltage rating applies to all TMP103 input voltages.

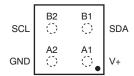
THERMAL INFORMATION

		TMP103	
	THERMAL METRIC ⁽¹⁾	YFF	UNITS
		4	
θ_{JA}	Junction-to-ambient thermal resistance	160	
θ_{JCtop}	Junction-to-case (top) thermal resistance	75	
θ_{JB}	Junction-to-board thermal resistance	76	°C/W
ΨЈТ	Junction-to-top characterization parameter	3	C/VV
ΨЈВ	Junction-to-board characterization parameter	74	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	N/A	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

ELECTRICAL CHARACTERISTICS

At $T_A = +25^{\circ}C$ and V = +1.4V to +3.6V, unless otherwise noted.


			1	MP103		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
TEMPERATURE INPUT					*	
Range			-40		+125	°C
A		-10°C to +100°C, V+ = 1.8V		0	±2	°C
Accuracy (Temperature Error)		-40°C to +125°C, V+ = 1.8V		±1	±3	°C
vs Supply				±0.2	±0.5	°C/V
Resolution				1.0		°C
DIGITAL INPUT/OUTPUT						
Input Logic Lovels	V _{IH}		0.7 (V+)		V+	V
nput Logic Levels V _{IL}			-0.5		0.3 (V+)	V
Input Current	I _{IN}	$0 < V_{IN} < (V+) + 0.3V$			1	μΑ
Outset Lavia Lavia		V+ > 2V, I _{OL} = 2mA	0		0.4	V
Output Logic Levels	V _{OL} SDA	V+ < 2V, I _{OL} = 2mA	0		0.2 (V+)	V
Resolution				8		Bit
Conversion Time				26	35	ms
		CR1 = 0, CR0 = 0 (default)		0.25		Conv/s
		CR1 = 0, CR0 = 1		1		Conv/s
Conversion Modes		CR1 = 1, CR0 = 0		4		Conv/s
		CR1 = 1, CR0 = 1		8		Conv/s
Timeout Time				30	40	ms
POWER SUPPLY						
Operating Supply Range			+1.4		+3.6	V
		Serial Bus Inactive, CR1 = 0, CR0 = 0 (default), V+ = 1.8V		1.5	3	μΑ
Quiescent Current	I_Q	Serial Bus Active, SCL Frequency = 400kHz		15		μA
		Serial Bus Active, SCL Frequency = 3.4MHz		85		μA
Shutdown Current I _{SD}		Serial Bus Inactive, V+ = 1.8V		0.5	1	μA
		Serial Bus Active, SCL Frequency = 400kHz		10		μA
		Serial Bus Active, SCL Frequency = 3.4MHz		80		μA
TEMPERATURE						
Specified Range			-40		+125	°C
Operating Range			-55		+150	°C

Product Folder Link(s): TMP103

PIN CONFIGURATION

YFF PACKAGE WCSP-4 (DSBGA-4) (TOP VIEW)

PIN DESCRIPTIONS

PIN		
NO. NAME		DESCRIPTION
A1	V+	Supply voltage
A2	GND	Ground
B1	SDA	Input/output data pin
B2	SCL	Input clock pin

TYPICAL CHARACTERISTICS

At $T_A = +25$ °C and V+ = 1.8V, unless otherwise noted.

QUIESCENT CURRENT vs TEMPERATURE (0.25 Conversions per Second)

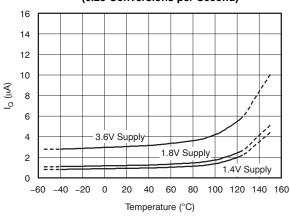


Figure 1.

SHUTDOWN CURRENT vs TEMPERATURE

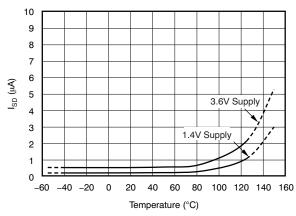


Figure 2.

CONVERSION TIME vs TEMPERATURE

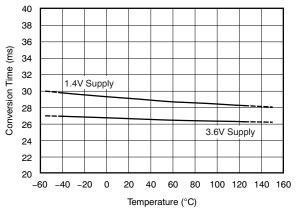


Figure 3.

QUIESCENT CURRENT vs BUS FREQUENCY (Temperature at 3.3V Supply)

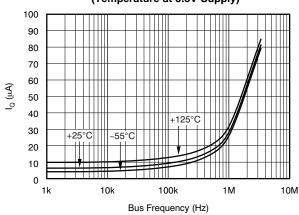


Figure 4.

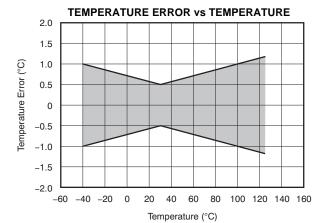
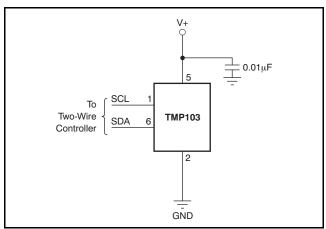


Figure 5.

Copyright © 2011, Texas Instruments Incorporated


APPLICATION INFORMATION

GENERAL DESCRIPTION

The TMP103 is a digital output temperature sensor in a wafer chip-scale package (WCSP) that is optimal for thermal management and thermal profiling. The TMP103 includes a two-wire interface that is compatible with both I²C and SMBus interfaces. In addition, the TMP103 has the capability of executing multiple device access (MDA) commands that allow multiple TMP103s to respond to a single global bus command. MDA commands reduce communication time and power in a bus that contains multiple TMP103 devices. The TMP103 is specified over a temperature range of –40°C to +125 °C.

The TMP103 serial interface is designed to support up to eight TMP103 devices on a single bus. The TMP103 is offered with eight internal interface addresses. Each unique address option can be used as a location or temperature zone designator. The TMP103 responds to standard I²C/SMBus slave protocols that allow the internal registers to be written to or read from on an individual basis. The TMP103 also responds to MDA commands that allow all the devices on the bus to be written to or read from, without having to send the individual address and commands to each device.

Pull-up resistors are required on SCL and SDA. A $0.01\mu F$ bypass capacitor is also recommended, as shown in Figure 6.

NOTE: SCL and SDA pins require pull-up resistors.

Figure 6. Typical Connections

The temperature sensor in the TMP103 is the chip itself. Thermal paths run through the package bumps as well as the package. The lower thermal resistance of metal causes the bumps to provide the primary thermal path.

To maintain accuracy in applications that require air or surface temperature measurement, care should be taken to isolate the package from ambient air temperature.

POINTER REGISTER

Figure 7 shows the internal register structure of the TMP103. The 8-bit Pointer Register of the device is used to address a given data register. The Pointer Register uses the two LSBs to identify which of the data registers should respond to a read or write command. Table 1 identifies the bits of the Pointer Register byte. During a write command, P2 through P7 must always be '0'. Table 2 describes the pointer address of the registers available in the TMP103. Power-up reset value of P1/P0 is '00'. By default, the TMP103 reads the temperature on power-up.

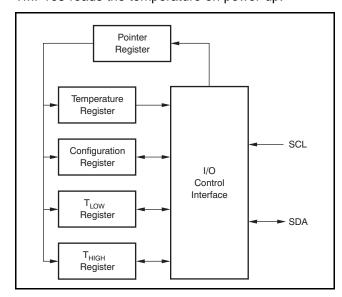


Figure 7. Internal Register Structure

Table 1. Pointer Register Byte

P 7	P6	P5	P4	P3	P2	P1	P0
0	0	0	0	0	0	Register Bits	

Table 2. Pointer Addresses

P1	P0	REGISTER			
0	0	Temperature Register (Read Only)			
0	1	Configuration Register (Read/Write)			
1	0	T _{LOW} Register (Read/Write)			
1	1	T _{HIGH} Register (Read/Write)			

TEMPERATURE REGISTER

The Temperature Register of the TMP103 is configured as an eight-bit, read-only register that stores the output of the most recent conversion. A single byte must be read to obtain data, and is described in Table 3. The data format for temperature is summarized in Table 4. One LSB equals 1°C.

Table 3. Temperature Register

D7	D6	D5	D4	D3	D2	D1	D0
T7	T6	T5	T4	Т3	T2	T1	T0

Negative numbers are represented in binary twos complement format. Following power-up or reset, the Temperature Register reads 0°C until the first conversion is complete.

Table 4. 8-Bit Temperature Data Format⁽¹⁾

TEMPERATURE (°C)	DIGITAL OUTPUT (BINARY)	HEX
128	0111 1111	7F
127	0111 1111	7F
100	0110 0100	64
80	0101 0000	50
75	0100 1011	4B
50	0011 0010	32
25	0001 1001	19
0	0000 0000	00
-1	1111 1111	FF
-25	1110 0111	E7
- 55	1100 1001	C9

⁽¹⁾ The resolution for the ADC is 1°C/count, where *count* is equal to the digital output of the ADC.

For positive temperatures (for example, +50°C):

Twos complement is not performed on positive numbers. Therefore, simply convert the number to binary code, left-justified format. Denote a positive number with MSB = '0'.

Example: $(+50^{\circ}C)/(1^{\circ}C/count) = 50 = 32h = 0011\ 0010$

For negative temperatures (for example, -25°C):

Generate the twos complement of a negative number by complementing the absolute value binary number and adding 1. Denote a negative number with MSB = '1'.

Example: $(|-25^{\circ}C|)/(1^{\circ}C/count) = 25 = 19h = 0001 1001$ Twos complement format: 1110 0110 + 1 = 1110 0111

CONFIGURATION REGISTER

The Configuration Register is an eight-bit read/write register used to store bits that control the operational modes of the temperature sensor. Read/write operations are performed MSB first. The format and power-up/reset value of the Configuration Register is shown in Table 5. All registers are updated at the end of the data byte.

Table 5. Configuration and Power-Up/Reset Format

D7	D6	D5	D4	D3	D2	D1	D0
ID	CR1	CR0	FH	FL	LC	M1	MO
0	0	0	0	0	0	1	0

TEMPERATURE WATCHDOG FUNCTION

The TMP103 contains a watchdog function that monitors device temperature and compares the result to the values stored in the temperature limit registers (T_{HIGH} and T_{LOW}) in order to determine if the device temperature is within these set limits. If the temperature of the TMP103 becomes greater than the value in the T_{HIGH} register, then the flag-high bit (FH) in the configuration register is set to '1'. If the temperature falls below value in the T_{LOW} register, then the flag-low bit (FL) is set to '1'. If both flag bits remain '0', then the temperature is within the temperature *window* set by the temperature limit registers, as shown in Figure 8.

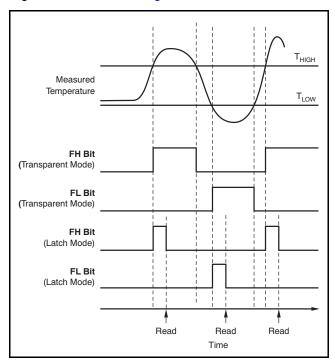
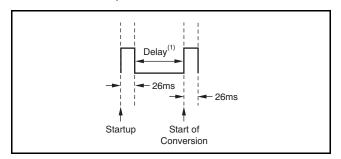


Figure 8. Temperature Flag Functional Diagram

The latch bit (LC) in the configuration register is used to latch the value of the flag bits (FH and FL) until the master issues a read command to the configuration register. The flag bits are set to '0' if a read command is received by the TMP103, or if LC = '0' and the temperature is within the temperature limits. The power-on default values for these bits are FH = '0', FL = '0', and LC = '0'.


CONVERSION RATE

The conversion rate bits, CR1 and CR0 located in the Configuration Register, configure the TMP103 for conversion rates of 8Hz, 4Hz, 1Hz, or 0.25Hz (default). The TMP103 has a typical conversion time of 26ms. To achieve different conversion rates, the TMP103 performs a single conversion and then powers down and waits for the appropriate delay set by CR1 and CR0. Table 6 shows the settings for CR1 and CR0.

Table 6. Conversion Rate Settings

CR1	CR0	CONVERSION RATE
0	0	0.25Hz (default)
0	1	1Hz
1	0	4Hz
1	1	8Hz

After power-up or general-call reset, the TMP103 immediately starts a conversion, as shown in Figure 9. The first result is available after 26ms (typical). The active quiescent current during conversion is $40\mu\text{A}$ (typical at $+27^{\circ}\text{C}$, V+ = 1.8V). The quiescent current during delay is $1.0\mu\text{A}$ (typical at $+27^{\circ}\text{C}$, V+ = 1.8V).

(1) Delay is set by CR1 and CR0.

Figure 9. Conversion Start

SHUTDOWN MODE (M1 = '0', M0 = '0')

Shutdown mode saves maximum power by shutting down all device circuitry other than the serial interface, reducing current consumption to typically less than $0.5\mu A$. Shutdown mode is enabled when bits M1 and M0 (in the Configuration Register) = '00'. The device shuts down when the current conversion is completed.

ONE-SHOT (M1 = '0', M0 = '1')

The TMP103 features a One-Shot Temperature Measurement mode. When the device is in Shutdown mode, writing a '01' to bits M1 and M0 starts a single temperature conversion. During the conversion, bits M1 and M0 read '01'. The device returns to the shutdown state at the completion of the single conversion. After the conversion, bits M1 and M0 read '00'. This feature is useful for reducing power consumption in the TMP103 when continuous temperature monitoring is not required.

As a result of the short conversion time, the TMP103 can achieve a higher conversion rate. A single conversion typically takes 26ms and a read can take place in less than 20µs. When using One-Shot mode, 30 or more conversions per second are possible.

CONTINUOUS CONVERSION MODE (M1 = '1')

When the TMP103 is in Continuous Conversion mode (M1 = '1'), a single conversion is performed at a rate determined by the conversion rate bits, CR1 and CR0 (in the Configuration Register). The TMP103 performs a single conversion and then powers down and waits for the appropriate delay set by CR1 and CR0. See Table 6 for CR1 and CR0 settings.

TEMPERATURE LIMIT REGISTERS

The T_{HIGH} and T_{LOW} registers are used to store the temperature limit thresholds for the TMP103 watchdog function. At the end of each temperature measurement, the TMP103 compares the temperature results to each of these limits. If the temperature result is greater than the T_{HIGH} limit, then the FH bit in the configuration register is set to '1'. If the temperature result is less than the T_{LOW} limit, then the FL bit in the configuration register is set to '1'; see Figure 8.

Table 7 and Table 8 describe the format for the T_{HIGH} and T_{LOW} registers. Power-up reset values for T_{HIGH} and T_{LOW} are: T_{HIGH} = +60°C and T_{LOW} = -10°C. The format of the data for T_{HIGH} and T_{LOW} is the same as for the Temperature Register.

Table 7. T_{HIGH} Register

D7	D6	D5	D4	D3	D2	D1	D0
H7	H6	H5	H4	НЗ	H2	H1	H0

Table 8. T_{LOW} Register

D7	D6	D5	D4	D3	D2	D1	D0
L7	L6	L5	L4	L3	L2	L1	LO

BUS OVERVIEW

The device that initiates the transfer is called a *master*, and the devices controlled by the master are *slaves*. The bus must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions.

To address a specific device, a START condition is initiated, indicated by pulling the data line (SDA) from a high to low logic level while SCL is high. All slaves on the bus shift in the slave address byte on the rising edge of the clock, with the last bit indicating whether a read or write operation is intended. During the ninth clock pulse, the slave being addressed responds to the master by generating an Acknowledge and pulling SDA low.

Data transfer is then initiated and sent over eight clock pulses followed by an Acknowledge Bit. During data transfer, SDA must remain stable while SCL is high, because any change in SDA while SCL is high is interpreted as a START or STOP signal.

Once all data have been transferred, the master generates a STOP condition indicated by pulling SDA from low to high, while SCL is high.

SERIAL INTERFACE

The TMP103 operates as a slave device only on the two-wire bus and SMBus. Connections to the bus are made via the open-drain I/O lines SDA and SCL. The SDA and SCL pins feature integrated spike suppression filters and Schmitt triggers to minimize the effects of input spikes and bus noise. The TMP103 supports the transmission protocol for both fast (1kHz to 400kHz) and high-speed (1kHz to 3.4MHz) modes. All data bytes are transmitted MSB first.

Submit Documentation Feedback

Product Folder Link(s): TMP103

SERIAL BUS ADDRESS

To communicate with the TMP103, the master must first address slave devices via a slave address byte. The slave address byte consists of seven address bits, and a direction bit that indicates the intent of executing a read or write operation.

The TMP103 is available in eight versions, each with a different slave address, as shown in Table 9. These addresses can be used as either a location or a temperature zone designator.

Table 9. Device Slave Addresses

PRODUCT	TWO-WIRE ADDRESS	TEMPERATURE ZONE
TMP103A	1110000	Zone1
TMP103B	1110001	Zone2
TMP103C	1110010	Zone3
TMP103D	1110011	Zone4
TMP103E	1110100	Zone5
TMP103F	1110101	Zone6
TMP103G	1110110	Zone7
TMP103H	1110111	Zone8

WRITING/READING OPERATION

Accessing a particular register on the TMP103 is accomplished by writing the appropriate value to the Pointer Register. The value for the Pointer Register is the first byte transferred after the slave address byte with the R/W bit low. Every write operation to the TMP103 requires a value for the Pointer Register (see Figure 12).

When reading from the TMP103, the last value stored in the Pointer Register by a write operation is used to determine which register is read by a read operation. To change the register pointer for a read operation, a new value must be written to the Pointer Register. This action is accomplished by issuing a slave address byte with the R/W bit low, followed by the Pointer Register byte. No additional data are required. The master can then generate a START condition and send the slave address byte with the R/W bit high to initiate the read command. See Figure 13 for details of this sequence. If repeated reads from the same register are desired, it is not necessary to continually send the Pointer Register bytes; the TMP103 remembers the Pointer Register value until it is changed by the next write operation. or the TMP103 is reset.

SLAVE MODE OPERATIONS

The TMP103 can operate as a slave receiver or slave transmitter. As a slave device, the TMP103 never drives the SCL line.

Slave Receiver Mode

The first byte transmitted by the master is the slave address, with the R/W bit low. The TMP103 then acknowledges reception of a valid address. The next byte transmitted by the master is the Pointer Register. The TMP103 then acknowledges reception of the Pointer Register byte. The next byte is written to the register addressed by the Pointer Register. The TMP103 acknowledges reception of the data byte. The master can terminate data transfer by generating a START or STOP condition.

Slave Transmitter Mode

The first byte transmitted by the master is the slave address, with the R/W bit high. The slave acknowledges reception of a valid slave address. The next byte is transmitted by the slave of the register indicated by the Pointer Register. The master acknowledges reception of the data byte. The master can terminate data transfer by generating a *Not-Acknowledge* on reception of the data byte, or generating a START or STOP condition.

GENERAL CALL

The TMP103 responds to a two-wire General Call address (0000000) if the eighth bit is '0'. The device acknowledges the General Call address and responds to commands in the second byte. If the second byte is 00000110, the TMP103 internal registers are reset to power-up values. The TMP103 does not support the General Address acquire command.

HIGH-SPEED (Hs) MODE

In order for the two-wire bus to operate at frequencies above 400kHz, the master device must issue an Hs-mode master code (00001xxx) as the first byte after a START condition to switch the bus to high-speed operation. The TMP103 does not acknowledge this byte, but switches its input filters on SDA and SCL and its output filters on SDA to operate in Hs-mode, allowing transfers at up to 3,4MHz, After the Hs-mode master code has been issued, the master transmits a START condition followed by a two-wire slave address to initiate a data transfer operation. The bus continues to operate in Hs-mode until a STOP condition occurs on the bus. Upon receiving the STOP condition, the TMP103 switches the input and output filters back to the default fast-mode operation.

TIMEOUT FUNCTION

The TMP103 resets the serial interface if SCL is held low for 30ms (typ). The TMP103 releases the bus if it is pulled low and waits for a START condition. To avoid activating the timeout function, it is necessary to maintain a communication speed of at least 1kHz for SCL operating frequency.

MULTIPLE DEVICE ACCESS

The TMP103 supports Multiple Device Access (MDA), which allows the master to communicate with multiple TMP103 devices on the same bus interface with one interface transaction. MDA commands consist of an MDA read address (00000001) and an MDA write address (00000000). The device acknowledges the MDA address and responds to the command accordingly. In order for MDA to function correctly, different product versions of the TMP103 must be used in the system; see Table 9.

Multiple Device Access Write

The master transmits an MDA write address followed by the pointer address of the register to be accessed; see Table 2. Following the pointer, all of the TMP103 devices on the bus acknowledge and wait for the next byte of data to be written to the addressed registers. When the data byte is received by the TMP103 devices, they store and acknowledge the transmitted byte. The TMP103s store the same data on all devices on the bus in one transaction; see Figure 14.

Multiple Device Access Read

Note that before an MDA read transaction can begin, the master must first send an MDA write transaction in order to set the appropriate pointer address of the register to be accessed, as stated in the previous section. The master can then transmit an MDA read address followed by a read byte for each TMP103 used on the bus. For example, if a TMP103A and TMP103B are used on the same bus and an MDA read address is sent, the address must be followed by two bytes of data and two master acknowledges.

The TMP103A sends data on the first byte and the TMP103B sends data on the second byte. The master must issue an acknowledge for each byte read in order to read all of the TMP103 devices on the bus; see Figure 15. If the master does not acknowledge each byte of data, the TMP103s stop sending subsequent data for any remaining devices.

Up to eight TMP103 devices can be on the same bus and respond to MDA commands; see Table 9.

NOTE: If the bus contains an incomplete sequence of TMP103 device addresses, the master must transmit all required dummy bytes for the missing device address to allow for normal MDA read operation. For example, if the TMP103A, TMP103B, and TMP103D devices are on the bus, the master must transmit an MDA read address followed by four bytes and four acknowledges in order to complete the MDA read transaction.

NOISE

The TMP103 is a very low-power device and generates very low noise on the supply bus. Applying an RC filter to the V+ pin of the TMP103 can further reduce any noise the TMP103 might propagate to other components. R_{F} in Figure 10 should be less than $5k\Omega$ and C_{F} should be greater than 10nF.

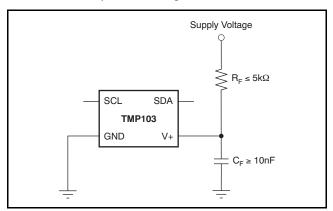
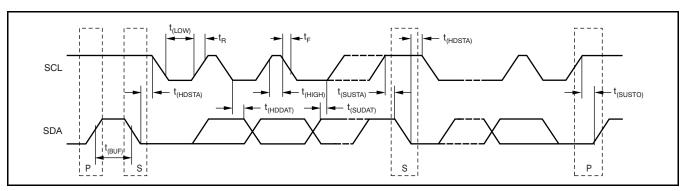


Figure 10. Noise Reduction

TIMING DIAGRAMS

The TMP103 is two-wire and SMBus compatible. Figure 11 to Figure 15 describe the various operations on the TMP103. Parameters for Figure 11 are defined in Table 10. Bus definitions are:

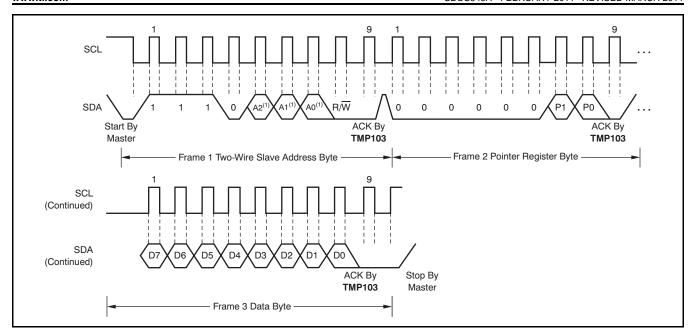

Bus Idle: Both SDA and SCL lines remain high.

Start Data Transfer: A change in the state of the SDA line, from high to low, while the SCL line is high, defines a START condition. Each data transfer is initiated with a START condition.

Stop Data Transfer: A change in the state of the SDA line from low to high while the SCL line is high defines a STOP condition. Each data transfer is terminated with a repeated START or STOP condition.

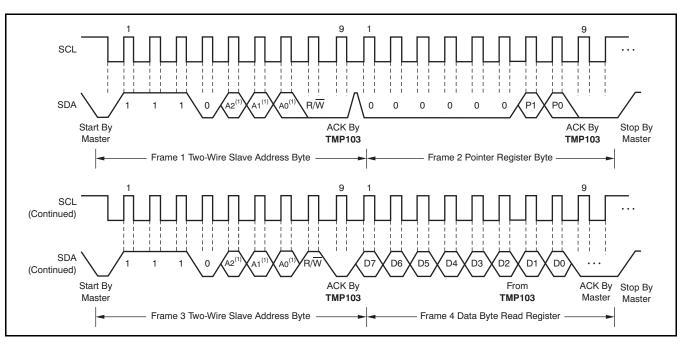
Data Transfer: The number of data bytes transferred between a START and a STOP condition is not limited and is determined by the master device.

Acknowledge: Each receiving addressed, is obliged to generate an Acknowledge bit. A device that acknowledges must pull down the SDA line during the Acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the Acknowledge clock pulse. Setup and hold times must be taken into account. On a master receive, the termination of the data transfer can be signaled the master generating Not-Acknowledge ('1') on the last byte that has been transmitted by the slave.



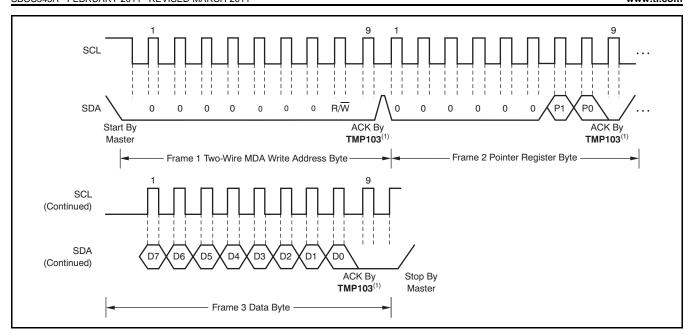
NOTE: P = STOP, S = START.

Figure 11. Two-Wire Timing Diagram

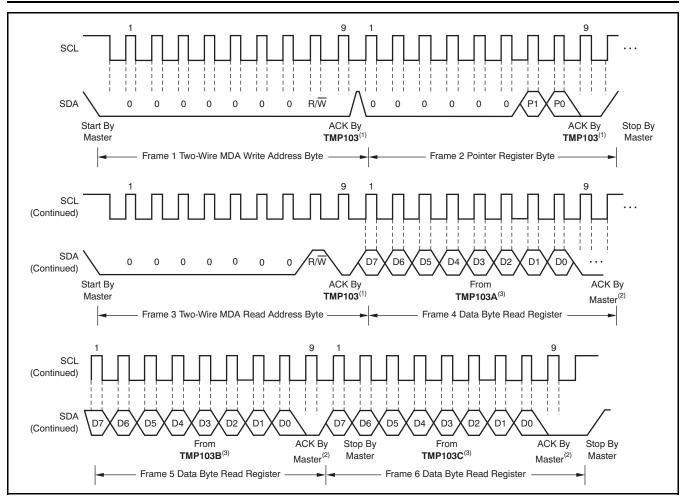

Table 10. Timing Diagram Definitions

		FAST	MODE	HIGH-SPE		
	PARAMETER	MIN	MAX	MIN	MAX	UNIT
f _(SCL)	SCL Operating Frequency, V _S > 1.7V	0.001	0.4	0.001	3.4	MHz
f _(SCL)	SCL Operating Frequency, V _S < 1.7V	0.001	0.4	0.001	2.75	MHz
t _(BUF)	Bus Free Time Between STOP and START Condition	600		160		ns
t _(HDSTA)	Hold time after repeated START condition. After this period, the first clock is generated.	100		100		ns
t _(SUSTA)	Repeated START Condition Setup Time	100		100		ns
t _(SUSTO)	STOP Condition Setup Time	100		100		ns
t _(HDDAT)	Data Hold Time	0		0		ns
t _(SUDAT)	Data Setup Time	100		10		ns
t _(LOW)	SCL Clock Low Period, V _S > 1.7V	1300		160		ns
t _(LOW)	SCL Clock Low Period, V _S < 1.7V	1300		200		ns
t _(HIGH)	SCL Clock High Period	600		60		ns
t _F	Clock/Data Fall Time		300			ns
t _R	Clock/Data Rise Time		300		160	ns
t _R	Clock/Data Rise Time for SCLK ≤ 100kHz		1000			ns

(1) The value of A0, A1, and A2 are determined by the TMP103 version; see Table 9.


Figure 12. Two-Wire Timing Diagram for Write Word Format

(1) The value of A0, A1, and A2 are determined by the TMP103 version; see Table 9.


Figure 13. Two-Wire Timing Diagram for Read Word Format

(1) All TMP103 devices on the bus acknowledge the byte.

Figure 14. Two-Wire Timing Diagram MDA Write Word Format

- (1) All TMP103 devices on the bus acknowledge the byte.
- (2) The master must issue an acknowledge for each byte read in order to read all of the TMP103 devices on the bus.
- (3) Three TMP103 devices used in this case; up to eight devices can be used (see Table 9).

Figure 15. Two-Wire Timing Diagram MDA Read Word Format Using Typical Application (Front Page)

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	hanges from Original (February 2011) to Revision A	Page
•	Changed Package-Lead from WCSP-4 to DSBGA-4 in Package/Ordering Information table	2

PACKAGE OPTION ADDENDUM

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
TMP103AYFFR	ACTIVE	DSBGA	YFF	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TA	Samples
TMP103AYFFT	ACTIVE	DSBGA	YFF	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TA	Samples
TMP103BYFFR	ACTIVE	DSBGA	YFF	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	ТВ	Samples
TMP103BYFFT	ACTIVE	DSBGA	YFF	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	ТВ	Samples
TMP103CYFFR	ACTIVE	DSBGA	YFF	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TC	Samples
TMP103CYFFT	ACTIVE	DSBGA	YFF	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TC	Samples
TMP103DYFFR	ACTIVE	DSBGA	YFF	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TD	Sample
TMP103DYFFT	ACTIVE	DSBGA	YFF	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TD	Sample
TMP103EYFFR	ACTIVE	DSBGA	YFF	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TE	Sample
TMP103EYFFT	ACTIVE	DSBGA	YFF	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TE	Sample
TMP103FYFFR	ACTIVE	DSBGA	YFF	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TF	Sample
TMP103FYFFT	ACTIVE	DSBGA	YFF	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TF	Sample
TMP103GYFFR	ACTIVE	DSBGA	YFF	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TG	Sample
TMP103GYFFT	ACTIVE	DSBGA	YFF	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TG	Sample
TMP103HYFFR	ACTIVE	DSBGA	YFF	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TH	Sample
TMP103HYFFT	ACTIVE	DSBGA	YFF	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	TH	Sample

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

PACKAGE OPTION ADDENDUM

11-Apr-2013

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

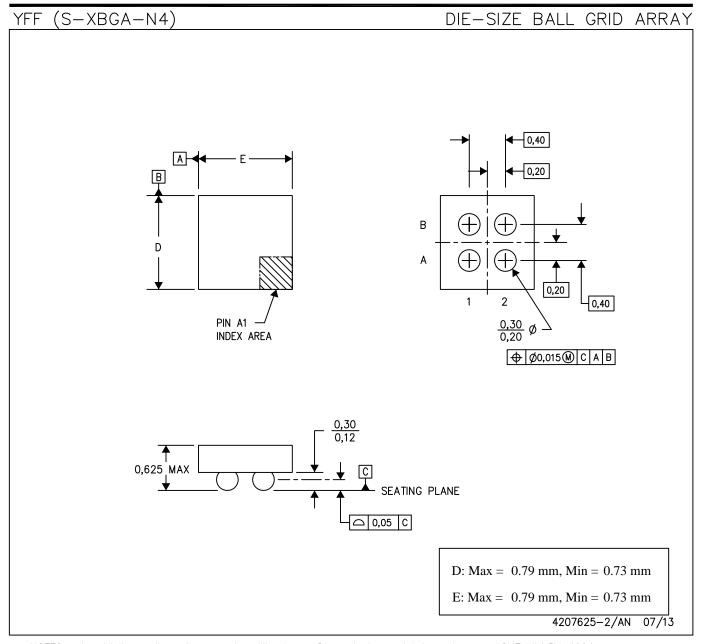
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. NanoFree™ package configuration.

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>