
Optical Comparator Array OPR5011

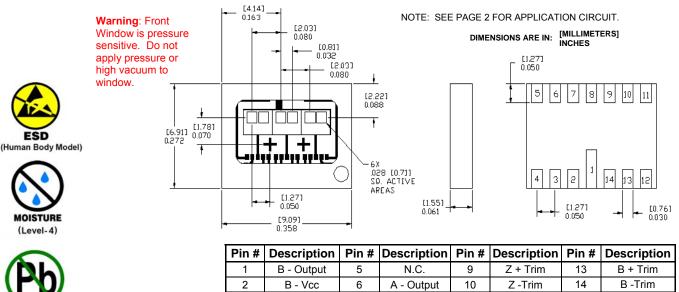
Features:

- Precise active area location
- Surface mountable
- TTL compatible output
- Wide supply voltage range

Description:

Each OPR5011 device is a hybrid sensor array that consists of three channels of the OPTEK differential optical comparator ('TRI-DOC") IC. The single chip construction ensures very tight dimensional tolerances between active areas.

Specifically designed for high-speed/high-resolution encoder applications, the open collector output switches based on the comparison of the input photodiode's light current levels. Logarithmic amplification of the input signals facilitates operation over a wide range of light levels.


The surface-mountable opaque polyimide package shields the photodiodes from stray light and can withstand multiple exposures to the most demanding soldering conditions, while the gold-plated wraparound contacts provide exceptional storage and wetting characteristics.

See Application Bulletin 237 for handling instructions.

Applications:

- · High-speed applications
- · High-resolution applications
- Applications requiring a wide range of light levels

Ordering Information							
Part Number	Sensor	# of Elements	lcc (mA) Typ / Max	Optical Hysteresis (%) Typical	Optical Offset (%) Min / Max	Packaging	
OPR5011	Differential Optical Comparator	3	9 / 20	40.00	-40/+40	Chip Tray	
OPR5011T	Differential Optical Comparator	3	9 / 20	40.00	-40/+40	Tape & Reel	

7

8

A - Vcc

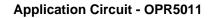
Common

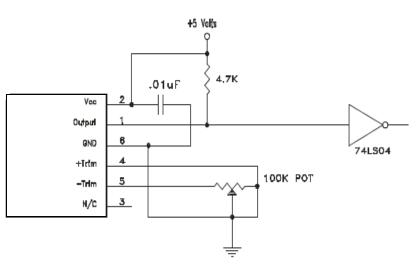
11

12

Z - Output

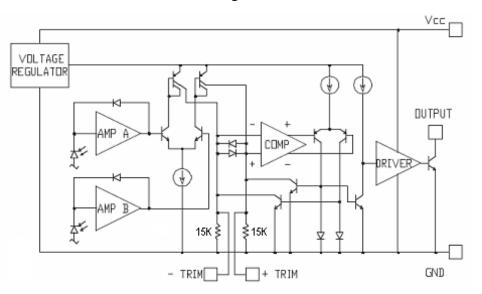
Z - Vcc


4 **Pb-Free** (RoHS) OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible


3

A + Trim

A -Trim



Notes:

- (1) The 74LS04 is recommended as a means of isolating the "DOC" comparator circuitry from transients induced by inductive and capacitive loads.
- (2) It is recommended that a decoupling capacitor be placed as close as possible to the device.

Block Diagram - OPC8332

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage and Operating Temperature	-40° C to +100° C
Supply Voltage	24 V
Output Voltage	24 V
Output Current	14 mA
Power Dissipation	500 mW
Solder reflow time within 5°C of peak temperature is 20 to 40 seconds ⁽¹⁾	250° C

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
I _{cc}	Supply Current	-	9	20	mA	V _{CC} = 24 V
V _{OL}	Low Level Output Voltage ⁽²⁾	-	0.3	0.4	V	I_{OL} = 14 mA, V_{CC} = 4.5 V
I _{OH}	High Level Output Current ⁽³⁾	-	0.1	1	μA	$V_{CC} = V_O = 20 V$
OPT-HYS	Optical Hysteresis ⁽⁴⁾⁽⁷⁾	-	40	-	%	V_{CC} = 5 V, I_{OL} = 1 mA
OPT-OFF	Optical Offset ⁽⁴⁾⁽⁷⁾	-40	10	+40	%	V_{CC} = 5 V, I_{OL} = 1 mA
f _{max}	Frequency Response ⁽⁵⁾	-	1	-	MHz	
t _{lh}	Output Rise Time ⁽⁶⁾	-	1	-	μs	$V_{CC} = 5 V$
t _{hl}	Output Fall Time ⁽⁶⁾	-	300	-	ns	

Notes:

(1) Solder time less than 5 seconds at temperature extreme.

(2) Pin (+) = 100.0 nW and Pin (-) = $1.0 \mu W$.

(3) Pin (+) = 1.0μ W and Pin (-) = 100.0 nW.

(4) Pin (-) is held at 1.0 μW while Pin (+) is ramped from 0.5 μW to 1.5 μW and back to 0.5 μW.

(5) Pin (+) is modulated from 1.0 μ W to 2.0 μ W. Pin (-) is modulated from 1.0 μ W to 2.0 μ W with phase shifted 180° with respect to Pin (+). Use 100 k Ω trimpot to set the output signal to 50% duty cycle for maximum operating frequency.

(6) Measured between 10% and 90% points.

(7) Optical Hysteresis and Optical Offset are found by placing 1.0 μW of light on the inverting photodiode and ramping the light intensity of the non-inverting input from 0.5 μW up to 1.5 μW and back down. This will produce two trigger points – an upper trigger point and lower trigger point. These points are used to calculate the optical hysteresis and offset.

These are defined as:

% Optical Hysteresis = 100 x <u>(P rise - P fall)</u> P in (-)

W	'he	ere:
Ρ	in	(-)

) = Light level incident upon the "-" photodiode on the IC chip (Pin) (-) = 1.0μ W).

- P rise = Value of light power level incident upon the "+" photodiode that his required to switch the digital output when the light level is an increasing level (rising edge).
- P fall = Value of light power level incident upon the "+" photodiode that is required to switch the digital output when the light level is decreasing level (falling edge).

P average = $\frac{(P rise + P fall)}{2}$

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.