

April 2013

FPAB20BH60B PFC SPM[®] 3 Series for 1-Phase Boost PFC

Features

- Low Thermal Resistance Thanks to Al₂O₃-DBC Substrate
- 600 V 20 A 1-Phase Boost PFC Including A Drive IC for Gate Driving and Protection
- Built-In NTC Thermistor for Monitoring Over-Temperature
- · Typical Switching Frequency of 20 kHz
- Isolation Rating of 2500 Vrms/min.

Applications

• 1-Phase Boost PFC Converter for Air Conditioner

General Description

FPAB20BH60B Is An Advanced PFC SPM 3 Series for 1-Phase Boost PFC (Power Factor Correction) that Fairchild Has Newly Developed for Mid-Power Applications such as Air Conditioners. It Combines Optimized Circuit Protections and A Drive IC Matched to High Frequency Switching IGBT. The System Reliability Is Further Enhanced by The Integrated Under-Voltage Lock-Out and Over-Current Protection Function.

Related Source

• Will Be Released

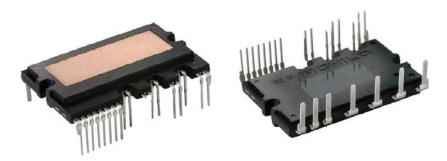


Fig. 1. Package Overview

Package Marking & Ordering Information

Device Marking	Device	Package	Packing Type	Reel Size	Tape Width	Quantity
FPAB20BH60B	FPAB20BH60B	SPMIC-027	RAIL	-	-	10

Integrated Power Functions

• PFC converter for 1-phase AC/DC power conversion (Please refer to Fig. 3)

Integrated Drive, Protection and System Control Functions

- For IGBTs: Gate drive circuit, Over Current(OC) protection, Control supply circuit Under-Voltage(UV) protection
- · Fault signal: Corresponding to OC and UV fault
- · Built-in thermistor: Over-temperature monitoring
- Input interface : Active-high interface, can work with 3.3 / 5 V Logic, Schmitt trigger input

Pin Configuration

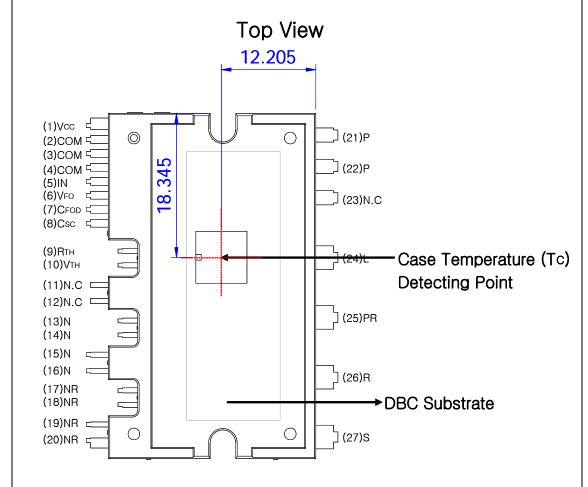


Fig. 2.

Note: For the measurement point of case temperature(T_C), please refer to Fig. 2.

Pin Descriptions

Pin Number	Pin Name	Pin Description
1	V_{CC}	Common Bias Voltage for IC and IGBT Driving
2,3,4	COM	Common Supply Ground
5	IN	Signal Input for IGBT
6	V _{FO}	Fault Output
7	C _{FOD}	Capacitor for Fault Output Duration Time Selection
8	C _{SC}	Capacitor (Low-pass Filter) for Over Current Detection
9	R _(TH)	NTC Thermistor terminal
10	V _(TH)	NTC Thermistor terminal
11,12	N.C	No Connection*
13~16	N	IGBT emitter
17~20	N _R	Negative DC-Link of Rectifier
21,22	Р	Positive Rail of DC-Link
23	N.C	No Connection
24	Ĺ	Reactor connection pin
25	P _R	Positive DC-Link of Rectifier
26	R	AC input for R-phase
27	S	AC input for S-phase

^{* 11}th and 12th pins are cut. Please refer to package outline drawings for more detail.

Internal Equivalent Circuit and Input/Output Pins

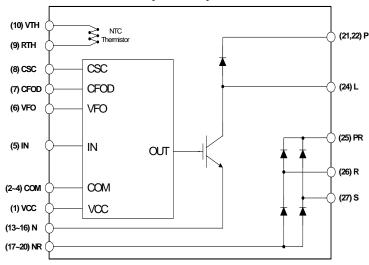


Fig. 3.

Absolute Maximum Ratings ($T_J = 25$ °C, Unless Otherwise Specified)

Converter Part

Item	Symbol	Condition	Rating	Unit
Input Supply Voltage	V _i	Applied between R-S	264	V_{RMS}
Input Supply Voltage (Surge)	V _{i(Surge)}	Applied between R-S	500	V
Output Voltage	V _{PN}	Applied between P- N	450	V
Output Voltage (Surge)	V _{PN(Surge)}	Applied between P- N	500	V
Collector-emitter Voltage	V _{CES}		600	V
Each IGBT Collector Current	I _C	$T_C = 25^{\circ}C, T_J < 150^{\circ}C$	20	Α
Each IGBT Collector Current (peak)	I _{CP}	T _C = 25°C, T _J < 150°C Under 1ms pulse width	40	Α
Collector Dissipation	P _C	T _C = 25°C per One IGBT	89	W
Repititive Peak Reverse Voltage	V_{RRM}		600	V
Peak Forward Surge Current	I _{FSM}	Single half sine-wave	250	Α
Operating Junction Temperature	TJ		-40 ~ 150	°C

Control Part

Item	Symbol	Condition	Rating	Unit
Control Supply Voltage	V _{CC}	Applied between V _{CC} - COM	20	V
Input Signal Voltage	V _{IN}	Applied between IN - COM	-0.3~V _{CC} +0.3	V
Fault Output Supply Voltage	V_{FO}	Applied between V _{FO} - COM	-0.3~V _{CC} +0.3	V
Fault Output Current	I _{FO}	Sink Current at V _{FO} Pin	5	mΑ
Current Sensing Input Voltage	V_{SC}	Applied between C _{SC} - COM	-0.3~V _{CC} +0.3	V

Total System

Item	Symbol	Condition	Rating	Unit
Storage Temperature	T _{STG}		-40 ~ 125	°C
Isolation Voltage	V _{ISO}	60 Hz, Sinusoidal, AC 1 minute, Connection Pins to DBC	2500	V _{rms}

Thermal Resistance

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Junction to Case Thermal	$R_{\theta(j-c)Q}$	IGBT	-	-	1.4	°C/W
Resistance	$R_{\theta(j-c)F}$	FRD	-	-	1.4	°C/W
	$R_{\theta(j-c)R}$	Rectifier	-	-	2.1	°C/W

Electrical Characteristics (T_J = 25°C, Unless Otherwise Specified)

Converter Part

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
IGBT saturation voltage	V _{CE(sat)}	$V_{CC} = 15 \text{ V}, V_{IN} = 5 \text{ V}; I_{C} = 20 \text{ A}$	-	2.3	3.0	V
FRD forward voltage	V_{FF}	I _F = 20 A	-	1.8	2.5	V
Rectifier forward voltage	V_{FR}	I _F = 20 A	-	1.2	1.5	V
Switching Times	t _{ON}	$V_{PN} = 400 \text{ V}, V_{CC} = 15 \text{ V}, I_{C} = 20 \text{ A}$	-	450	-	ns
	t _{C(ON)}	$V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}$, Inductive Load	-	200	-	ns
	t _{OFF}	(Note 1)	-	350	-	ns
	t _{C(OFF)}		-	80	-	ns
	t _{rr}	1	-	70	-	ns
	I _{rr}		-	6	-	Α
Collector - emitter Leakage Current	I _{CES}	V _{CE} = V _{CES}	-	-	250	μА

Electrical Characteristics

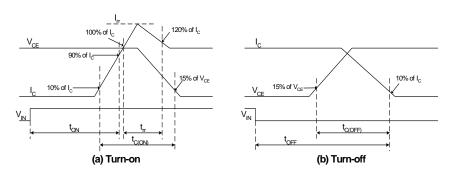


Fig. 4. Switching Time Definition

Control Part

Item	Symbol	Condition		Min.	Тур.	Max.	Unit
Quiescent V _{CC} Supply Current	I _{QCCL}	$V_{CC} = 15 \text{ V}, \text{ IN} = 0 \text{ V}$	V _{CC} - COM	-	-	26	mA
Fault Output Voltage	V _{FOH}	V _{SC} = 0 V, V _{FO} Circu	it: 4.7 kΩ to 5 V Pull-up	4.5	-	-	V
	V _{FOL}	V _{SC} = 1 V, V _{FO} Circu	it: 4.7 kΩ to 5 V Pull-up	-	-	0.8	V
Over Current Trip Level	V _{SC(ref)}	V _{CC} = 15 V		0.45	0.5	0.55	V
Supply Circuit Under-	UV _{CCD}	Detection Level	Detection Level		11.9	13.0	V
Voltage Protection	UV _{CCR}	Reset Level		11.2	12.4	13.2	V
Fault-out Pulse Width	t _{FOD}	$C_{FOD} = 33 \text{ nF (Note :}$	2)	1.4	1.8	2.0	ms
ON Threshold Voltage	V _{IN(ON)}	Applied between IN - COM		2.8	-	-	V
OFF Threshold Voltage	V _{IN(OFF)}			-	-	0.8	V
Resistance of Thermistor	R _{TH}	@ T _{TH} = 25°C (Note3, Fig. 9)		-	47.0	-	kΩ
		@ T _{TH} = 100°C (Note	e3, Fig. 9)	-	2.9	-	kΩ

Note
2. The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation : $C_{FOD} = 18.3 \times 10^{-6} \times t_{FOD}[F]$ 3. T_{TH} is the temperature of thermister itselt. To know case temperature (T_C) , please make the experiment considering your application.

Note
1. toN and toFF include the propagation delay time of the internal drive IC. to(ON) and to(OFF) are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Fig. 4

Recommended Operating Condition

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Supply Voltage	V _i	Applied between R-S	187	220	253	V
Output Voltage	V _{PN}	Applied between P-N		380	400	V
Control Supply Voltage	V _{CC}	Applied between V _{CC(L)} - COM	13.5	15	16.5	V
Control supply variation	dV _{CC} /dt		-1	-	1	V/μs
PWM Input Frequency	f _{PWM}	T _J ≤ 150°C per IGBT		20		kHz
Allowable Input Current	l _i	$T_C < 95^{\circ}C$, $V_i = 220 \text{ V}$, $V_{PN} = 380 \text{ V}$			20	Α
(Peak)		V _{PWM} = 20 kHz				

Mechanical Characteristics and Ratings

Item	C	andition	Limit			Unit	
item		Condition			Max.	Onit	
Mounting Torque	Mounting Screw: M3	Recommended 0.62 N•m	0.51	0.62	0.72	N•m	
Device Flatness	Note Fig. 5		0	-	+120	μm	
Weight			-	15.00	-	g	

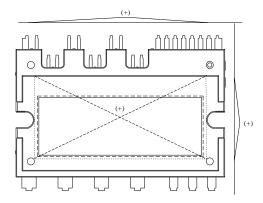
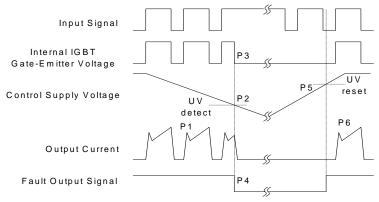
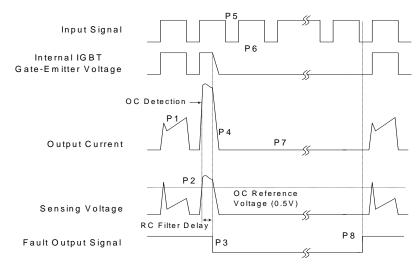



Fig. 5. Flatness Measurement Position

Time Charts of SPMs Protective Function



P1: Normal operation - IGBT ON and conducting current

P2 : Under voltage detection P3 : IGBT gate interrupt P4 : Fault signal generation P5 : Under voltage reset

P6: Normal operation - IGBT ON and conducting current

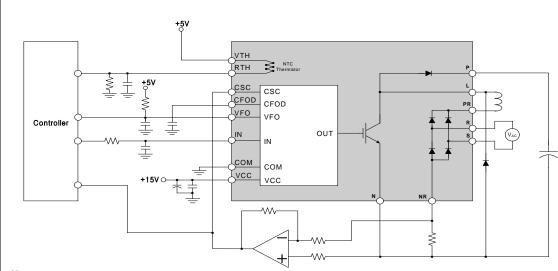
Fig. 6. Under-Voltage Protection

P1 : Normal operation - IGBT ON and conducting current

P2 : Over current detection

P3: IGBT gate interrupt / Fault signal generation

P4: IGBT is slowly turned off


P5 : IGBT OFF signal

P6: IGBT ON signal - but IGBT cannot be turned on during the fault Output activation

P7: IGBT OFF state

P8: Fault Output reset and normal operation start

Fig. 7. Over Current Protection

Note:

- 1. Each capacitors should be located as close to PFC SPM® product pins as possible.
- 2. It's recommended that anti-parallel diode should be connected with IGBT.

Fig. 8. Application Example

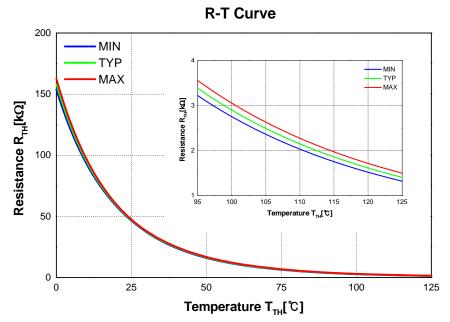
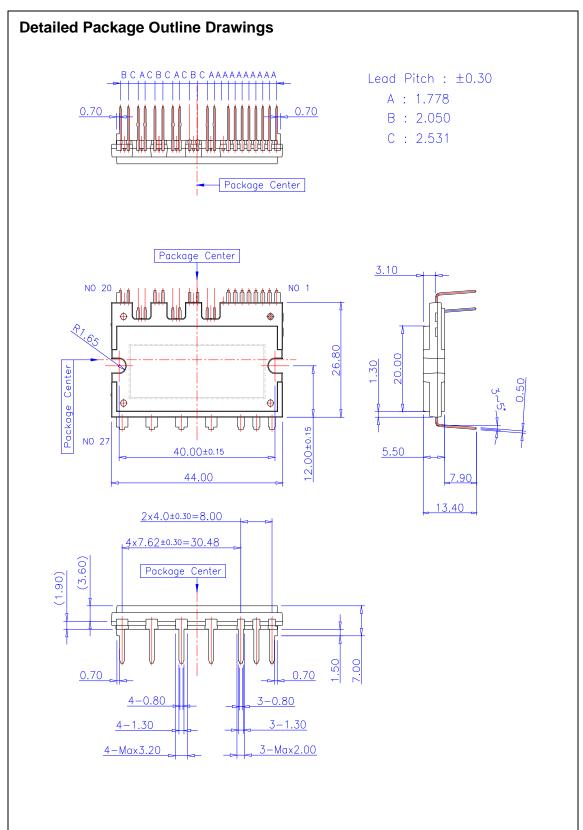
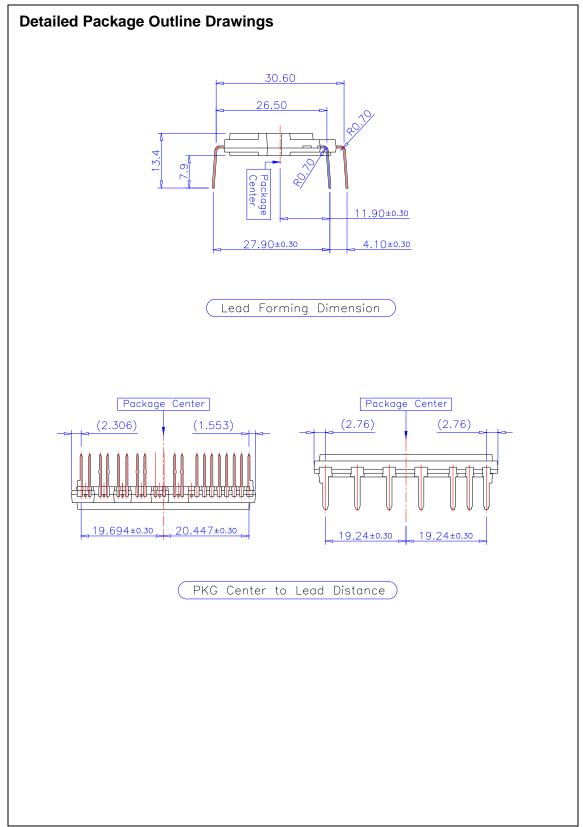
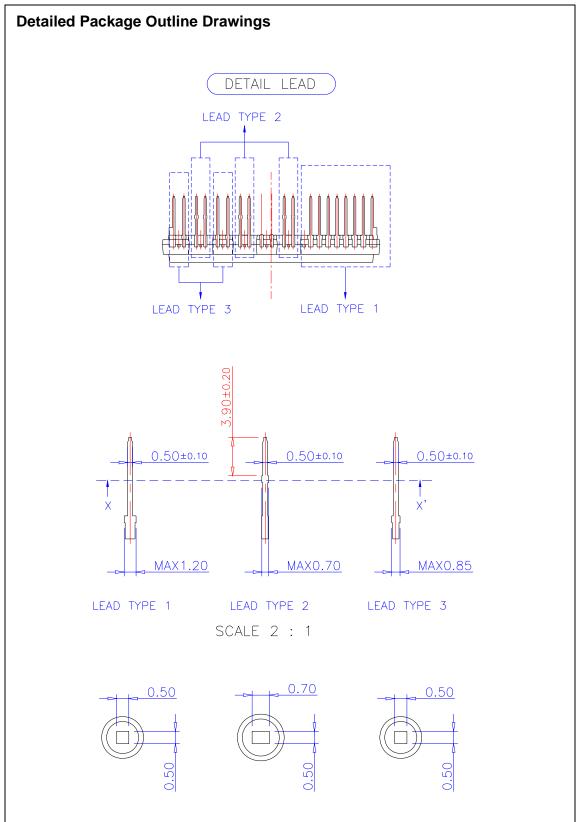





Fig. 9. R-T Curve of the Built-in Thermistor

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 2Cool™
 FPS™

 AccuPower™
 F-PS™

 AX-CAP®*
 FRET®

 BitSiC™
 Global Power Resource®™

 Build it Now™
 GreenBridge™

 CorePLUS™
 Green FPS™

 CorePOWER™
 Green FPS™ e-Series™

CorePOWERTM

CROSSVOLTTM

CTLTM

Current Transfer LogicTM

DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax™
ESBC™

Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™

Gmax™ GTO™ IntelliMA ISOPLA Making : and MegaBu MICRO MicroPa MicroPa MicroPa MilerDri MotionM

IntelliMAX™
ISOPLANAR™
Making Small Speakers Sound Louder
and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak™
MillerDrive™
MotionMax™
mWSaver™
OptoHiT™
OPTOLOGIC®
OPTOPLANAR®

® PowerTrench[®] PowerXS™

RapidConfigure™

Programmable Active Droop™ QFET[®] QS™ Quiet Series™

O™ Saving our

Saving our world, 1mW/WkW at a time™ SignalWise™

SmartMax™ SMART START™ Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™3
SuperSOT™6
SuperSOT™8
SuperSOT™8
SupreMOS®
SyncFET™

Sync-Lock™

SYSTEM

GENERAL®

TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TinyOPTO™
TinyPower™
TinyPWM™
TinyWre™
TranSiC™
TriFault Detect™
##RUECURRENT®
##SerDes™

LSETDESTM

SETDEST

UHC

Ultra FRFETTM

UniFETTM

VCXTM

VisualMaxTM

VoltagePlusTM

XSTM

DISCLAIMER

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild straking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

		Definition			
		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed Full Production Datas		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 164

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.