Vishay Semiconductors

SCR/SCR and SCR/Diode (MAGN-A-PAK Power Modules), 230 A

MAGN-A-PAK

230 A

FEATURES

- High voltage
- Electrically isolated base plate
- 3500 V_{RMS} isolating voltage
- Industrial standard package
- · Simplified mechanical designs, rapid assembly
- High surge capability
- Large creepage distances
- UL approved file E78996
- Compliant to RoHS directive 2002/95/EC
- Designed and qualified for industrial level

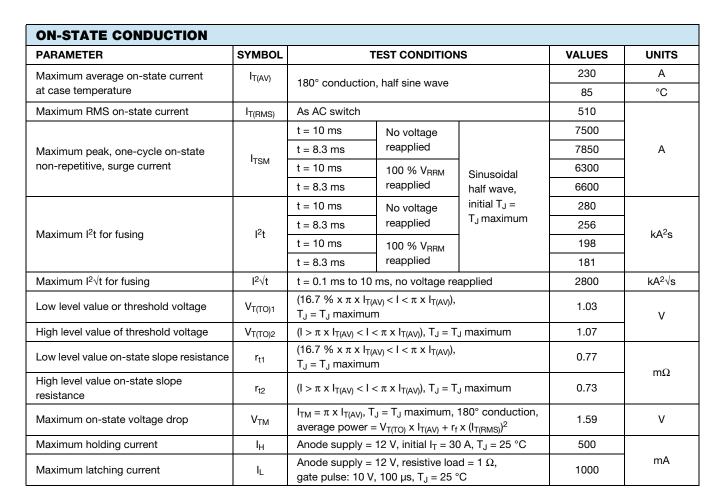
DESCRIPTION

This new VSK series of MAGN-A-PAK modules uses high voltage power thyristor/thyristor and thyristor/diode in seven basic configurations. The semiconductors are electrically isolated from the metal base, allowing common heatsinks and compact assemblies to be built. They can be interconnected to form single phase or three phase bridges or as AC-switches when modules are connected in anti-parallel mode. These modules are intended for general purpose applications such as battery chargers, welders, motor drives, UPS, etc.

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL	CHARACTERISTICS	VALUES	UNITS					
I _{T(AV)}	85 °C	230						
I _{T(RMS)}		510	٨					
1	50 Hz	7500	A					
ITSM	60 Hz	7850						
l ² t	50 Hz	280	kA ² s					
1-1	60 Hz	260	KA-S					
l²√t		280	kA²√s					
V _{DRM} /V _{RRM}		Up to 2000	V					
TJ	Range	- 40 to 130	°C					

ELECTRICAL SPECIFICATIONS

PRODUCT SUMMARY


I_{T(AV)}

VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK REVERSE AND OFF-STATE BLOCKING VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} AT 130 °C MAXIMUM mA			
	08	800	900				
	12	1200	1300				
VSK.230-	16	1600	1700	50			
	18	1800	1900				
	20	2000	2100				

Vishay Semiconductors

SCR/SCR and SCR/Diode (MAGN-A-PAK Power Modules), 230 A

SWITCHING						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Typical delay time	t _d	$T_J = 25 \text{ °C}$, gate current = 1 A dl _g /dt = 1 A/µs	1.0			
Typical rise time	t _r	V _d = 0.67 % V _{DRM}	2.0	μs		
Typical turn-off time	tq	I_{TM} = 300 A; dl/dt = 15 A/μs; T _J = T _J maximum; V _R = 50 V; dV/dt = 20 V/μs; gate 0 V, 100 Ω	50 to 150	- PO		

BLOCKING							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum peak reverse and off-state leakage current	I _{RRM,} I _{DRM}	$T_J = T_J$ maximum	50	mA			
RMS insulation voltage V _{INS}		50 Hz, circuit to base, all terminals shorted, 25 $^{\circ}\text{C},$ 1 s	3000	V			
Critical rate of rise of off-state voltage	dV/dt	T_J = T_J maximum, exponential to 67 % rated V_{DRM}	1000	V/µs			

SCR/SCR and SCR/Diode V (MAGN-A-PAK Power Modules), 230 A

Vishay Semiconductors

TRIGGERING							
PARAMETER	SYMBOL TEST CONDITIONS		VALUES	UNITS			
Maximum peak gate power	P _{GM}	$t_p \le 5 \text{ ms}, T_J = T_J r$	naximum	10.0	w		
Maximum average gate power	P _{G(AV)}	$f = 50 \text{ Hz}, \text{ T}_{\text{J}} = \text{T}_{\text{J}} \text{ r}$	naximum	2.0	vv		
Maximum peak gate current	+ I _{GM}	$t_p \le 5 \text{ ms}, T_J = T_J r$	naximum	3.0	A		
Maximum peak negative gate voltage	- V _{GT}	$t_p \le 5 \text{ ms}, T_J = T_J r$	naximum	5.0			
		T _J = - 40 °C	Anode supply = 12 V, resistive load; Ra = 1 Ω	4.0	V		
Maximum required DC gate voltage to trigger	V_{GT}	T _J = 25 °C		3.0			
		$T_J = T_J maximum$		2.0			
		T _J = - 40 °C	Anode supply = 12 V, resistive load; Ra = 1 Ω	350			
Maximum required DC gate current to trigger	I _{GT}	T _J = 25 °C		200	mA		
		$T_J = T_J$ maximum	103131100 1040, 114 - 1 32	100			
Maximum gate voltage that will not trigger	V _{GD}	$T_J = T_J$ maximum, rated V _{DRM} applied		0.25	V		
Maximum gate current that willnot trigger	I _{GD}	$T_J = T_J$ maximum, rated V_{DRM} applied		10.0	mA		
Maximum rate of rise of turned-on current	dl/dt	$T_J = T_J$ maximum, $I_{TM} = 400$ A, rated V _{DRM} applied		500	A/µs		

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Junction operating temper	ature range	TJ		- 40 to 130	℃	
Storage temperature range	e	T _{Stg}		- 40 to 150	U	
Maximum thermal resistance, junction to case per junction		R _{thJC}	DC operation	0.125		
Typical thermal resistance, case to heatsink per module		R _{thCS}	Mounting surface flat, smooth and greased	0.02	K/W	
Mounting torque ± 10 %	MAP to heatsink	A mounting compound is recommende and the torque should be rechecked aft		4 to 6	Nm	
	busbar to MAP		period of about 3 h to allow for the spread of the compound.	4 10 0	INITI	
Approximate weight				500	g	
Approximate weight				17.8	oz.	
Case style				MAGN	-A-PAK	

DEVICES	SINUS	DIDAL CON	DUCTION	AT T _J MA	хімим	RECTANGULAR CONDUCTION AT T _J MAXIMUM				UNITS	
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VSK.230-	0.009	0.010	0.010	0.020	0.032	0.007	0.011	0.015	0.020	0.033	K/W

Note

• Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Vishay Semiconductors

SCR/SCR and SCR/Diode (MAGN-A-PAK Power Modules), 230 A

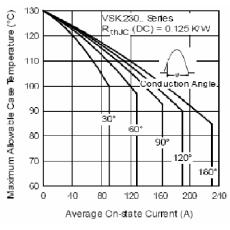
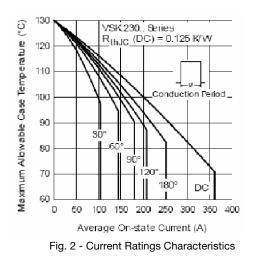



Fig. 1 - Current Ratings Characteristics

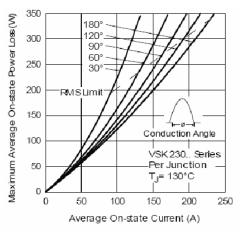


Fig. 3 - On-State Power Loss Characteristics

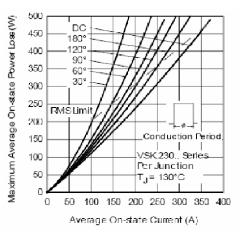


Fig. 4 - On-State Power Loss Characteristics

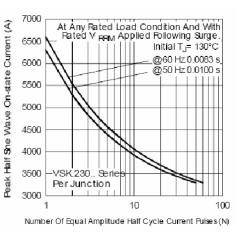
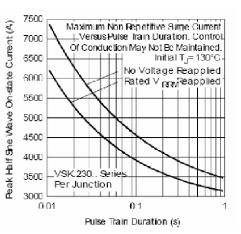
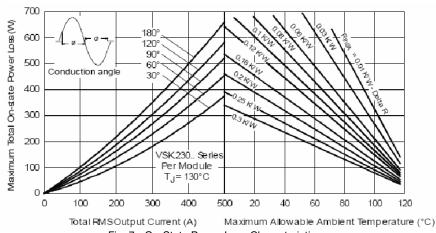
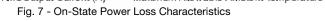


Fig. 5 - Maximum Non-Repetitive Surge Current


Fig. 6 - Maximum Non-Repetitive Surge Current



SCR/SCR and SCR/Diode (MAGN-A-PAK Power Modules), 230 A

Vishay Semiconductors

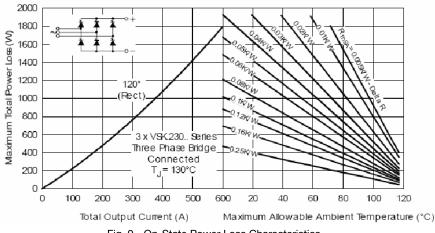
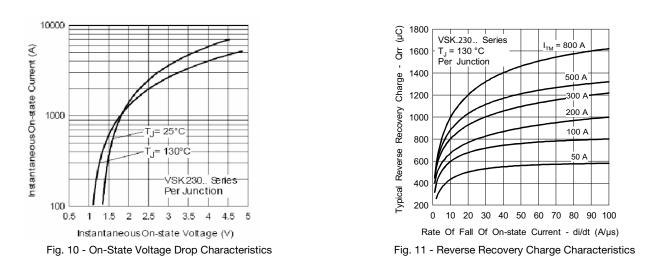
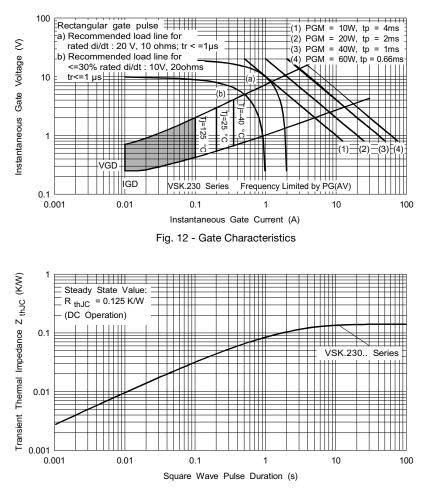
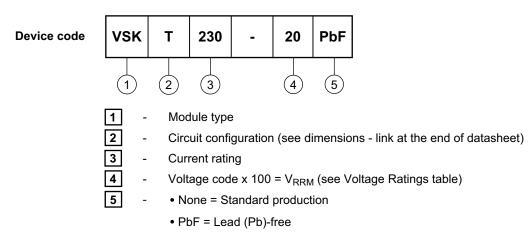



Fig. 9 - On-State Power Loss Characteristics

Vishay Semiconductors

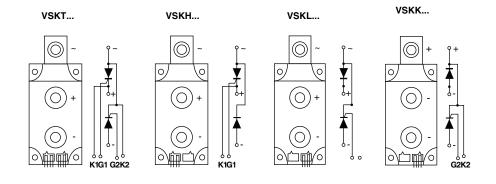
SCR/SCR and SCR/Diode (MAGN-A-PAK Power Modules), 230 A

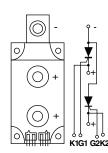



Fig. 13 - Thermal Impedance Z_{thJC} Characteristics

SCR/SCR and SCR/Diode (MAGN-A-PAK Power Modules), 230 A

Vishay Semiconductors


ORDERING INFORMATION TABLE


Note

• To order the optional hardware go to www.vishay.com/doc?95172

CIRCUIT CONFIGURATION

VSKV...

Available 800 V; contact factory for different requirements.

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95086			

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.