Austin MicroLynx IITM 12 V SIP Non-isolated Power Modules: $8.3 \mathrm{Vdc}-14 \mathrm{Vdc}$ input; 0.75 Vdc to 5.5 Vdc Output; 6 A Output Current

EZ-SEQUENCE ${ }^{\text {TM }}$

Applications

- Distributed power architectures
- Intermediate bus voltage applications
- Telecommunications equipment
- Servers and storage applications
- Networking equipment
- Enterprise Networks
- Latest generation IC's (DSP, FPGA, ASIC) and Microprocessor powered applications

Features

- Compliant to RoHS EU Directive 2002/95/EC (-Z versions)
- Compliant to ROHS EU Directive 2002/95/EC with lead solder exemption (non-Z versions)
- Flexible output voltage sequencing

EZ-SEQUENCE ${ }^{\text {TM }}$

- Delivers up to 6A output current
- High efficiency -89% at 5.0 V full load $\left(\mathrm{V}_{\mathrm{IN}}=\right.$ 12.0V)
- Small size and low profile:
$25.4 \mathrm{~mm} \times 12.7 \mathrm{~mm} \times 6.68 \mathrm{~mm}$
(1.00 in $\times 0.5$ in $\times 0.263$ in)
- Low output ripple and noise
- High Reliability:

Calculated MTBF $=15.3 \mathrm{M}$ hours at $25^{\circ} \mathrm{C}$ Full-load

- Constant switching frequency (300 KHz)
- Programmable Output voltage
- Line Regulation: 0.3\% (typical)
- Load Regulation: 0.4\% (typical)
- Temperature Regulation: 0.4 \% (typical)
- Remote On/Off
- Output overcurrent protection (non-latching)
- Wide operating temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
- UL* 60950-1Recognized, CSA ${ }^{\dagger}$ C22.2 No. 60950-1-03 Certified, and VDE ${ }^{\ddagger}$ 0805:2001-12 (EN60950-1) Licensed
- ISO** 9001 and ISO 14001 certified manufacturing facilities

Description

Austin MicroLynx II ${ }^{\text {TM }} 12 \mathrm{~V}$ SIP power modules are non-isolated dc-dc converters that can deliver up to 6A of output current with full load efficiency of 89% at 5.0 V output. These modules provide precisely regulated output voltage programmable via external resistor from 0.75 Vdc to 5.5 V dc over a wide range of input voltage ($\mathrm{V}_{\mathrm{IN}}=8.3-14 \mathrm{~V}$). The Austin MicroLynx II ${ }^{\text {TM }} 12 \mathrm{~V}$ series has a sequencing feature, EZ-SEQUENCE ${ }^{\text {TM }}$ that enable designers to implement various types of output voltage sequencing when powering multiple voltages on a board. Their openframe construction and small footprint enable designers to develop cost- and space-efficient solutions.

[^0]
Austin MicroLynx II $^{\text {TM }} 12 \mathrm{~V}$ SIP Non-isolated Power Modules:

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.

Parameter	Device	Symbol	Min	Max	Unit
Input Voltage Continuous	All	$\mathrm{V}_{\text {IN }}$	-0.3	15	$\mathrm{Vdc}_{\mathrm{V}}$
Sequencing voltage	All	Vseq	-0.3	$\mathrm{~V}_{\text {IN }, \text { max }}$	Vdc
Operating Ambient Temperature (see Thermal Considerations section)	All	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$
Storage Temperature	All	$\mathrm{T}_{\text {stg }}$	-55	125	${ }^{\circ} \mathrm{C}$

Electrical Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions.

Parameter	Device	Symbol	Min	Typ	Max	Unit
Operating Input Voltage	$\begin{aligned} & V_{\mathrm{o}, \text { set }} \leq 3.63 \\ & \mathrm{~V}_{\mathrm{o}, \text { set }}>3.63 \end{aligned}$	$\begin{aligned} & V_{\text {IN }} \\ & V_{\text {IN }} \end{aligned}$	$\begin{aligned} & 8.3 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{gathered} 14 \\ 13.2 \end{gathered}$	Vdc Vdc
Maximum Input Current $\left(\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I N}, \min } \text { to } \mathrm{V}_{\mathbb{I N}, \max }, \mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{O}, \max }\right)$	All	$\mathrm{I}_{\mathrm{N}, \text { max }}$			4.5	Adc
Input No Load Current $\left(\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I N}, \text { nom }}, \mathrm{lo}=0, \text { module enabled }\right)$	$\begin{aligned} & \mathrm{V}_{0, \text { set }}=0.75 \mathrm{Vdc} \\ & \mathrm{~V}_{0, \text { set }}=5.5 \mathrm{Vdc} \end{aligned}$	$\mathrm{I}_{\mathrm{N}, \mathrm{No} \text { load }}$ $\mathrm{I}_{\mathrm{in}, \mathrm{No} \text { load }}$		$\begin{gathered} 17 \\ 100 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Input Stand-by Current $\left(\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I N}, \text { nom }}\right.$, module disabled)	All	$\mathrm{I}_{\mathrm{IN}, \text { stand-by }}$		1.2		mA
Inrush Transient	All	$\mathrm{I}^{2} \mathrm{t}$			0.4	$A^{2} s$
Input Reflected Ripple Current, peak-to-peak (5 Hz to $20 \mathrm{MHz}, 1 \mu \mathrm{H}$ source impedance; $\mathrm{V}_{\mathrm{IN}, \text { min }}$ to $\mathrm{V}_{\mathrm{IN}_{\mathrm{N}} \text { max }} \mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{Omax}}$; See Test configuration section)	All			30		mAp-p
Input Ripple Rejection (120Hz)	All			30		dB

CAUTION: This power module is not internally fused. An input line fuse must always be used.

This power module can be used in a wide variety of applications, ranging from simple standalone operation to being part of a complex power architecture. To preserve maximum flexibility, internal fusing is not included, however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a fastacting fuse with a maximum rating of 6 A (see Safety Considerations section). Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same type of fuse with a lower rating can be used. Refer to the fuse manufacturer's data sheet for further information.

Data Sheet January 18, 2010

Austin MicroLynx II $^{\text {TM }} 12 \mathrm{~V}$ SIP Non-isolated Power Modules: $8.3-14 \mathrm{Vdc}$ input; 0.75 Vdc to 5.5 Vdc Output; 6 A output current

Electrical Specifications (continued)

Parameter	Device	Symbol	Min	Typ	Max	Unit
Output Voltage Set-point $\left(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IN}, \min }, \mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{O}, \max }, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	All	V_{o}, set	-2.0	V_{o}, set	+2.0	\% $\mathrm{V}_{\mathrm{O} \text {, set }}$
Output Voltage (Over all operating input voltage, resistive load, and temperature conditions until end of life)	All	V_{0}, set	-2.5\%	-	+3.5\%	\% $\mathrm{V}_{\mathrm{O} \text {, set }}$
Adjustment Range Selected by an external resistor	All	V_{0}	0.7525		5.5	Vdc
Output Regulation Line $\left(V_{\mathbb{I N}}=V_{\mathbb{I N}, \text { min }}\right.$ to $\left.V_{\mathbb{N}, \max }\right)$ Load ($\mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{O}, \text { min }}$ to $\mathrm{I}_{\mathrm{O}, \max }$) Temperature ($\mathrm{T}_{\mathrm{ref}}=\mathrm{T}_{\mathrm{A}, \min }$ to $\mathrm{T}_{\mathrm{A}, \max }$)	All All All		- $-$	$\begin{aligned} & 0.3 \\ & 0.4 \\ & 0.4 \end{aligned}$	- -	$\% V_{0, \text { set }}$ $\% V_{0, \text { set }}$ $\% \mathrm{~V}_{\mathrm{O} \text {, set }}$
Output Ripple and Noise on nominal output $\left(\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IN}, \text { nom }}\right.$ and $\mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{O}, \text { min }}$ to $\mathrm{I}_{\mathrm{O}, \text { max }}$ Cout $=1 \mu \mathrm{~F}$ ceramic $/ / 10 \mu \mathrm{Ftantalum}$ capacitors) RMS (5Hz to 20MHz bandwidth) Peak-to-Peak (5Hz to 20MHz bandwidth)	All All		-	$\begin{aligned} & 15 \\ & 50 \end{aligned}$	$\begin{aligned} & 30 \\ & 75 \end{aligned}$	$\mathrm{m} \mathrm{V}_{\text {rms }}$ $\mathrm{m} \mathrm{V}_{\mathrm{pk}-\mathrm{pk}}$
External Capacitance $\begin{aligned} & E S R \geq 1 \mathrm{~m} \Omega \\ & E S R \geq 10 \mathrm{~m} \Omega \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$	$\mathrm{C}_{\mathrm{o}, \max }$ $\mathrm{C}_{\mathrm{o}, \text { max }}$		-	$\begin{aligned} & 1000 \\ & 3000 \end{aligned}$	$\mu \mathrm{F}$ $\mu \mathrm{F}$
Output Current	All	1 。	0		6	Adc
Output Current Limit Inception (Hiccup Mode) $\left(V_{0}=90 \% \text { of } V_{0, \text { set }}\right)$	All	10, lim	-	200	-	\% Io
Output Short-Circuit Current ($\mathrm{V}_{\mathrm{o}} \leq 250 \mathrm{mV}$) (Hiccup Mode)	All	$\mathrm{l}_{\mathrm{o}, \mathrm{s} / \mathrm{c}}$	-	2	-	Adc
Efficiency $\begin{aligned} & V_{\mathbb{I N}}=V_{V_{\mathbb{N}, ~ n o m ~}}, T_{A}=25^{\circ} \mathrm{C} \\ & I_{\mathrm{O}}=\mathrm{I}_{\mathrm{O}, \text { max },} \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{O}, \text { set }} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}, \text { set }}=1.2 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{O}, \text { set }}=1.5 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{O}, \text { set }}=1.8 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{O}, \mathrm{set}}=2.5 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{O}, \mathrm{set}}=3.3 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{O}, \text { et }}=5.0 \mathrm{Vdc} \end{aligned}$	η η η η η η		$\begin{aligned} & 80.0 \\ & 83.0 \\ & 83.5 \\ & 86.5 \\ & 89.0 \\ & 91.0 \end{aligned}$		$\begin{aligned} & \text { \% } \\ & \% \\ & \% \\ & \% \\ & \% \\ & \% \end{aligned}$
Switching Frequency	All	$\mathrm{f}_{\text {sw }}$	-	300	-	kHz
Dynamic Load Response $\left(\mathrm{dlo} / \mathrm{dt}=2.5 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I N}, \text { nom }} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ Load Change from Io=50\% to 100% of lo,max; $1 \mu \mathrm{~F}$ ceramic// $10 \mu \mathrm{~F}$ tantalum Peak Deviation Settling Time (Vo<10\% peak deviation) $\left(\mathrm{dlo} / \mathrm{dt}=2.5 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I N}, \text { nom }} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ Load Change from lo= 100% to 50% of lo,max: $1 \mu \mathrm{~F}$ ceramic// $10 \mu \mathrm{~F}$ tantalum Peak Deviation Settling Time (Vo<10\% peak deviation)	All All All All	$V_{p k}$ t_{s} $V_{p k}$ t_{s}	- - -	$\begin{gathered} 200 \\ 25 \\ 200 \\ 25 \end{gathered}$	— — —	mV $\mu \mathrm{S}$ mV $\mu \mathrm{S}$

Electrical Specifications (continued)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \& Device \& Symbol \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
Dynamic Load Response \\
(dlo/dt=2.5A/ \(\mu \mathrm{s} ; \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IN}, \text { nom }} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) \\
Load Change from lo=50\% to 100\% of lo,max; \\
Co \(=2 \times 150 \mu \mathrm{~F}\) polymer capacitors \\
Peak Deviation \\
Settling Time (Vo<10\% peak deviation)
\[
\left(\mathrm{dlo} / \mathrm{dt}=2.5 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I N}, \text { nom }} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] \\
Load Change from lo= \(100 \%\) to \(50 \%\) of lo,max: Co \(=2 \times 150 \mu \mathrm{~F}\) polymer capacitors \\
Peak Deviation \\
Settling Time (Vo<10\% peak deviation)
\end{tabular} \& All
All
All

All \& | $V_{p k}$ |
| :--- |
| t_{s} $V_{p k}$ t_{s} | \& - \& 50

50
50

50 \& - \& | mV |
| :--- |
| $\mu \mathrm{S}$ |
| mV |
| $\mu \mathrm{s}$ |

\hline
\end{tabular}

General Specifications

Parameter	Min	Typ	Max	Unit
Calculated MTBF $\left(\mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{O}, \text { max, }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ per Telecordia SR-332 Issue 1: Method 1 Case 3		$15,371,900$		Hours
Weight	-	$2.8(0.1)$	-	g (oz.)

Feature Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information.

Parameter	Device	Symbol	Min	Typ	Max	Unit
On/Off Signal interface Device code with Suffix "4" - Positive logic (On/Off is open collector/drain logic input; Signal referenced to GND - See feature description continn) Input High Voltage (Module ON) Input High Current Input Low Voltage (Module OFF) Input Low Current Device Code with no suffix - Negative Logic (On/OFF pin is open collector/drain logic input with external pull-up resistor; signal referenced to GND) Input High Voltage (Module OFF) Input High Current Input Low Voltage (Module ON) Input low Current	All All	VIH ІІн VIL IIL VIH IIH VIL IIL	$\begin{gathered} - \\ -0.2 \\ - \\ 2.5 \\ -0.2 \end{gathered}$	0.2 0.2	$\begin{gathered} \mathrm{V}_{\mathbb{I N}, \max } \\ 10 \\ 0.3 \\ 1 \\ \\ \\ \\ \mathrm{~V}_{\mathrm{IN}, \max } \\ 1 \\ 0.3 \\ 10 \end{gathered}$	V $\mu \mathrm{A}$ V mA Vdc mA Vdc $\mu \mathrm{A}$
Turn-On Delay and Rise Times $\left(\mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{O}, \max ,} \mathrm{~V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IN}, \text { nom, }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},\right)$ Case 1: On/Off input is set to Logic Low (Module ON) and then input power is applied (delay from instant at which $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I N}}$, min until $\mathrm{Vo}=10 \%$ of Vo , set) Case 2: Input power is applied for at least one second and then the On/Off input is set to logic Low (delay from instant at which Von/Off $=0.3 \mathrm{~V}$ until $\mathrm{Vo}=10 \%$ of Vo, set) Output voltage Rise time (time for Vo to rise from 10\% of V_{o},set to 90% of V_{0}, set)	All All All	Tdelay Tdelay Trise		3 3 4	6	msec msec msec
Output voltage overshoot - Startup $\mathrm{I}_{\mathrm{O}}=\mathrm{I}_{\mathrm{O}, \max } ; \mathrm{V}_{\mathrm{IN}}=8.3$ to $14 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				-	1	\% $\mathrm{V}_{\mathrm{o} \text {, set }}$
Sequencing Delay time Delay from $\mathrm{V}_{\mathbb{N}, \text { min }}$ to application of voltage on SEQ pin	All	TsEQ-delay	10			msec
Tracking Accuracy (Power-Up: 2V/ms) (Power-Down: $1 \mathrm{~V} / \mathrm{ms})$ $\left(\mathrm{V}_{\mathrm{IN}, \text { min }}\right.$ to $\mathrm{V}_{\mathrm{IN}, \text { max }} ; \mathrm{I}_{\mathrm{O}, \text { min }}$ to $\left.\mathrm{I}_{\mathrm{O}, \text { max }} \mathrm{VsEQ}<\mathrm{V}_{\mathrm{o}}\right)$	All All	$\begin{aligned} & \mid V \text { SEQ - } V_{0} \mid \\ & \left\|V s E Q-V_{0}\right\| \end{aligned}$		$\begin{aligned} & 100 \\ & 300 \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Overtemperature Protection (See Thermal Consideration section)	All	$\mathrm{T}_{\text {ref }}$	-	140	-	${ }^{\circ} \mathrm{C}$
Input Undervoltage Lockout Turn-on Threshold Turn-off Threshold	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$			$\begin{aligned} & 7.9 \\ & 7.8 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Data Sheet
 January 18, 2010

Austin MicroLynx II ${ }^{\text {TM }} 12 \mathrm{~V}$ SIP Non-isolated Power Modules: 8.3 - 14 Vdc input; 0.75 Vdc to 5.5 Vdc Output; 6 A output current

Characteristic Curves

The following figures provide typical characteristics for the Austin MicroLynx ${ }^{\text {TM }} \| 12 \mathrm{~V}$ SIP modules at $25^{\circ} \mathrm{C}$.

Figure 1. Converter Efficiency versus Output Current (Vout = 1.2Vdc).

Figure 2. Converter Efficiency versus Output Current (Vout $=1.5 \mathrm{Vdc}$).

Figure 3. Converter Efficiency versus Output Current (Vout $=1.8 \mathrm{Vdc}$).

Figure 4. Converter Efficiency versus Output Current (Vout $=\mathbf{2 . 5 V d c}$).

Figure 5. Converter Efficiency versus Output Current (Vout $=3.3 \mathrm{Vdc}$).

Figure 6. Converter Efficiency versus Output Current (Vout = 5.0Vdc).

Data Sheet January 18, 2010

Austin MicroLynx II ${ }^{\text {TM }} 12 \mathrm{~V}$ SIP Non-isolated Power Modules: $8.3-14 \mathrm{Vdc}$ input; 0.75 Vdc to 5.5 Vdc Output; 6 A output current

Characteristic Curves (continued)

The following figures provide typical characteristics for the MicroLynx ${ }^{T M}$ II 12 V SIP modules at $25^{\circ} \mathrm{C}$.

Figure 7. Input voltage vs. Input Current
(Vout $=5 \mathrm{Vdc}$).

Figure 8. Typical Output Ripple and Noise ($\mathrm{Vin}=12 \mathrm{~V}$ dc, $\mathrm{Vo}=2.5 \mathrm{Vdc}, \mathrm{lo}=6 \mathrm{~A}$).

Figure 9. Typical Output Ripple and Noise (Vin = 12.0V dc, Vo = 3.3 Vdc, lo=6A).

Figure 10. Transient Response to Dynamic Load Change from $\mathbf{5 0 \%}$ to $\mathbf{1 0 0 \%}$ of full load (Vo = 3.3Vdc).

Figure 11. Transient Response to Dynamic Load Change from $\mathbf{1 0 0 \%}$ to $\mathbf{5 0 \%}$ of full load (Vo = 3.3 Vdc).

Figure 12. Transient Response to Dynamic Load Change from $\mathbf{5 0 \%}$ to $\mathbf{1 0 0 \%}$ of full load (Vo = 5.0 Vdc, Cext $=2 \times 150 \mu \mathrm{~F}$ Polymer Capacitors).

Data Sheet
January 18, 2010

Austin MicroLynx II ${ }^{\text {TM }} 12 \mathrm{~V}$ SIP Non-isolated Power Modules: $8.3-14 \mathrm{Vdc}$ input; 0.75 Vdc to 5.5 Vdc Output; 6 A output current

Characteristic Curves (continued)

The following figures provide typical characteristics for the Austin MicroLynx ${ }^{\mathrm{TM}}$ II 12 V SIP modules at $25^{\circ} \mathrm{C}$.

Figure 13. Transient Response to Dynamic Load Change from 100% of 50% full load (Vo = 5.0 Vdc, Cext $=2 \times 150 \mu \mathrm{~F}$ Polymer Capacitors).

Figure 14. Typical Start-Up Using Remote On/Off (Vin $=12 \mathrm{Vdc}, \mathrm{Vo}=3.3 \mathrm{Vdc}$, $\mathrm{lo}=6.0 \mathrm{~A}$).

Figure 15. Typical Start-Up Using Remote On/Off with Low-ESR external capacitors ($7 \times 150 \mathrm{uF}$ Polymer) (Vin = 12Vdc, Vo = $3.3 \mathrm{Vdc}, \mathrm{lo}=6.0 \mathrm{~A}, \mathrm{Co}=1050 \mu \mathrm{~F})$.

Figure 16. Typical Start-Up with application of Vin with (Vin $=12 \mathrm{Vdc}$, $\mathrm{Vo}=3.3 \mathrm{Vdc}$, $\mathrm{lo}=6 \mathrm{~A}$).

Figure 17 Typical Start-Up using Remote On/off with Prebias $(V i n=12 \mathrm{Vdc}, \mathrm{Vo}=1.8 \mathrm{Vdc}$, $\mathrm{lo}=1 \mathrm{~A}$, Vbias $=1.0$ Vdc).

Figure 18. Output short circuit Current (Vin $=12 \mathrm{Vdc}$, Vo $=0.75 \mathrm{Vdc}$).

Data Sheet January 18, 2010

Austin MicroLynx II $^{\text {TM }} 12 \mathrm{~V}$ SIP Non-isolated Power Modules: 8.3 - 14 Vdc input; 0.75 Vdc to 5.5 Vdc Output; 6A output current

Characteristic Curves (continued)

The following figures provide thermal derating curves for the Austin MicroLynx ${ }^{\text {TM }}$ II 12V SIP modules.

Figure 19. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 12Vdc, $\mathrm{Vo}=0.75 \mathrm{Vdc}$).

Figure 20. Derating Output Current versus Local Ambient Temperature and Airflow (Vin $=12 \mathrm{Vdc}$, $\mathrm{Vo}=1.8 \mathrm{Vdc}$).

Figure 21. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 12Vdc, $\mathrm{Vo}=2.5 \mathrm{Vdc}$).

Figure 22. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 12Vdc, Vo=3.3 Vdc).

Figure 23. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 12Vdc, $\mathrm{Vo}=5.0 \mathrm{Vdc}$).

Test Configurations

NOTE: Measure input reflected ripple current with a simulated
source inductance ($\mathrm{L}_{\text {TEST }}$) of $1 \mu \mathrm{H}$. Capacitor C_{S} offsets possible battery impedance. Measure current as shown above.

Figure 24. Input Reflected Ripple Current Test Setup.

Figure 25. Output Ripple and Noise Test Setup.

NOTE: All voltage measurements to be taken at the module terminals, as shown above. If sockets are used then Kelvin connections are required at the module terminals to avoid measurement errors due to socket contact resistance.

Figure 26. Output Voltage and Efficiency Test Setup.

$$
\text { Efficiency } \quad \eta=\frac{V_{0} \cdot I_{0}}{V_{\mathbb{I N}} \cdot I_{\mathbb{N}}} \quad x \quad 100 \%
$$

Design Considerations

Input Filtering

The Austin MicroLynx ${ }^{\text {TM }}$ II 12V SIP module should be connected to a low-impedance source. A highly inductive source can affect the stability of the module. An input capacitance must be placed directly adjacent to the input pin of the module, to minimize input ripple voltage and ensure module stability.

In a typical application, $2 \times 47 \mu \mathrm{~F}$ low-ESR tantalum capacitors (AVX part \#: TPSE476M025R0100, $47 \mu \mathrm{~F} 25 \mathrm{~V} 100 \mathrm{~m} \Omega \mathrm{ESR}$ tantalum capacitor) will be sufficient to provide adequate ripple voltage at the input of the module. To minimize ripple voltage at the input, low ESR ceramic capacitors are recommended at the input of the module. Figure 27 shows input ripple voltage ($\mathrm{mVp}-\mathrm{p}$) for various outputs with $2 \times 47 \mu \mathrm{~F}$ tantalum capacitors and with $2 \times 22 \mu \mathrm{~F}$ ceramic capacitor (TDK part \#:
C4532X5R1C226M) at full load.

Output Voltage (Vdc)
Figure 27. Input ripple voltage for various output with $2 \times 47 \mu \mathrm{~F}$ tantalum capacitors and with 2×22 $\mu \mathrm{F}$ ceramic capacitors at the input (80% of Io,max).

Design Considerations (continued)

Output Filtering

The Austin MicroLynx ${ }^{\text {TM }} \| 12 \mathrm{~V}$ SIP module is designed for low output ripple voltage and will meet the maximum output ripple specification with $1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ polymer capacitors at the output of the module. However, additional output filtering may be required by the system designer for a number of reasons. First, there may be a need to further reduce the output ripple and noise of the module. Second, the dynamic response characteristics may need to be customized to a particular load step change.

To reduce the output ripple and improve the dynamic response to a step load change, additional capacitance at the output can be used. Low ESR polymer and ceramic capacitors are recommended to improve the dynamic response of the module. For stable operation of the module, limit the capacitance to less than the maximum output capacitance as specified in the electrical specification table.

Safety Considerations

For safety agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards, i.e., UL 60950-1, CSA C22.2 No. 60950-103, and VDE 0850:2001-12 (EN60950-1) Licensed.

For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV), the input must meet SELV requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV.
The input to these units is to be provided with a fastacting fuse with a maximum rating of 6 A in the positive input lead.

Feature Description

Remote On/Off

Austin MicroLynx ${ }^{\text {TM }}$ II 12V SIP power modules feature an On/Off pin for remote On/Off operation. Two On/Off logic options are available in the Austin MicroLynx ${ }^{\text {TM }}$ II 12 V series modules. Positive Logic On/Off signal, device code suffix " 4 ", turns the module ON during a logic High on the On/Off pin and turns the module OFF during a logic Low. Negative logic On/Off signal, no device code suffix, turns the module OFF during logic High and turns the module ON during logic Low.
For positive logic modules, the circuit configuration for using the On/Off pin is shown in Figure 28. The On/Off pin is an open collector/drain logic input signal (Von/Off) that is referenced to ground. During a logichigh (On/Off pin is pulled high internal to the module) when the transistor Q1 is in the Off state, the power module is ON. Maximum allowable leakage current of the transistor when Von/off $=\mathrm{V}_{\mathrm{IN}, \max }$ is $10 \mu \mathrm{~A}$.
Applying a logic-low when the transistor Q1 is turnedOn, the power module is OFF. During this state VOn/Off must be less than 0.3 V . When not using positive logic On/off pin, leave the pin unconnected or tie to V_{IN}.

Figure 28. Circuit configuration for using positive logic On/OFF.

For negative logic On/Off devices, the circuit configuration is shown is Figure 29. The On/Off pin is pulled high with an external pull-up resistor (typical Rpull-up $=68 \mathrm{k},+/-5 \%)$. When transistor Q1 is in the Off state, logic High is applied to the On/Off pin and the power module is Off. The minimum On/off voltage for logic High on the On/Off pin is 2.5 Vdc . To turn the module ON, logic Low is applied to the On/Off pin by turning ON Q1. When not using the negative logic On/Off, leave the pin unconnected or tie to GND.

Figure 29. Circuit configuration for using negative logic On/OFF.

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current-limiting circuitry and can endure current limiting continuously. At the point of current-limit inception, the unit enters hiccup mode. The unit operates normally once the output current is brought back into its specified range. The typical average output current during hiccup is 2A.

Input Undervoltage Lockout

At input voltages below the input undervoltage lockout limit, module operation is disabled. The module will begin to operate at an input voltage above the undervoltage lockout turn-on threshold.

Overtemperature Protection

To provide over temperature protection in a fault condition, the unit relies upon the thermal protection feature of the controller IC. The unit will shutdown if the thermal reference point $T_{\text {ref2 }}$, (see Figure 33) exceeds $140^{\circ} \mathrm{C}$ (typical), but the thermal shutdown is not intended as a guarantee that the unit will survive temperatures beyond its rating. The module will automatically restarts after it cools down.

Feature Descriptions (continued)

Output Voltage Programming

The output voltage of the Austin MicroLynx ${ }^{\text {TM }}$ II 12 V SIP can be programmed to any voltage from 0.75 Vdc to 5.5 Vdc by connecting a resistor (shown as Rtrim in Figure 30) between Trim and GND pins of the module. Without an external resistor between Trim and GND pins, the output of the module will be 0.7525 Vdc . To calculate the value of the trim resistor, Rtrim for a desired output voltage, use the following equation:

$$
\text { Rtrim }=\left[\frac{10500}{V o-0.7525}-1000\right] \Omega
$$

Rtrim is the external resistor in Ω
$V o$ is the desired output voltage
For example, to program the output voltage of the Austin MicroLynx ${ }^{\text {TM }} 12 \mathrm{~V}$ module to 1.8 V , Rtrim is calculated as follows:

$$
\begin{gathered}
\text { Rtrim }=\left[\frac{10500}{1.8-0.7525}-1000\right] \\
\text { Rtrim }=9.024 \mathrm{k} \Omega
\end{gathered}
$$

Figure 30. Circuit configuration to program output voltage using an external resistor

Table 1 provides Rtrim values for most common output voltages.

Table 1

$\mathbf{V}_{\mathbf{0}, \text { set }} \mathbf{(V)}$	Rtrim $(\mathbf{K} \Omega)$
0.7525	Open
1.2	22.46
1.5	13.05
1.8	9.024
2.5	5.009
3.3	3.122
5.5	1.472

Using 1\% tolerance trim resistor, set point tolerance of $\pm 2 \%$ is achieved as specified in the electrical specification. The POL Programming Tool, available at www.lineagepower.com under the Design Tools section, helps determine the required external trim resistor needed for a specific output voltage.

The amount of power delivered by the module is defined as the voltage at the output terminals multiplied by the output current. When using the trim feature, the output voltage of the module can be increased, which at the same output current would increase the power output of the module. Care should be taken to ensure that the maximum output power of the module remains at or below the maximum rated power ($\left.\mathrm{P}_{\max }=\mathrm{V}_{\mathrm{o}, \text { set }} \mathrm{X} \mathrm{I}_{\mathrm{o} \text {, max }}\right)$.

Voltage Margining

Output voltage margining can be implemented in the Austin MicroLynx ${ }^{\text {TM }}$ II modules by connecting a resistor, $\mathrm{R}_{\text {margin-up, }}$ from Trim pin to ground pin for margining-up the output voltage and by connecting a resistor, $\mathrm{R}_{\text {margin-down, }}$, from Trim pin to Output pin. Figure 31 shows the circuit configuration for output voltage margining. The POL Programming Tool, available at www.lineagepower.com under the Design Tools section, also calculates the values of $\mathrm{R}_{\text {margin-up }}$ and $\mathrm{R}_{\text {margin-down }}$ for a specific output voltage and \% margin. Please consult your Lineage Power technical representative for additional details

Figure 31. Circuit Configuration for margining Output voltage.

Feature Descriptions (continued)

Voltage Sequencing

Austin MicroLynx ${ }^{\text {TM }}$ II 12 V series of modules include a sequencing feature, EZ-SEQUENCE ${ }^{T M}$ that enables users to implement various types of output voltage sequencing in their applications. This is accomplished via an additional sequencing pin. When not using the sequencing feature, either tie the SEQ pin to Vin or leave it unconnected.

When an analog voltage is applied to the SEQ pin, the output voltage tracks this voltage until the output reaches the set-point voltage. The SEQ voltage must be set higher than the set-point voltage of the module. The output voltage follows the voltage on the SEQ pin on a one-to-one volt basis. By connecting multiple modules together, customers can get multiple modules to track their output voltages to the voltage applied on the SEQ pin.

For proper voltage sequencing, first, input voltage is applied to the module. The On/Off pin of the module is left unconnected (or tied to GND for negative logic modules or tied to Vin for positive logic modules) so that the module is ON by default. After applying input voltage to the module, a minimum of 10 msec delay is required before applying voltage on the SEQ pin. During this time, potential of $50 \mathrm{mV}(\pm 10 \mathrm{mV})$ is maintained on the SEQ pin. After 10 msec delay, an analog voltage is applied to the SEQ pin and the output voltage of the module will track this voltage on a one-to-one volt bases until output reaches the setpoint voltage. To initiate simultaneous shutdown of the modules, the SEQ pin voltage is lowered in a controlled manner. Output voltage of the modules tracks the voltages below their set-point voltages on a one-to-one basis. A valid input voltage must be maintained until the tracking and output voltages reach ground potential to ensure a controlled shutdown of the modules.

When using the EZ-SEQUENCE ${ }^{\text {TM }}$ feature to control start-up of the module, pre-bias immunity feature during start-up is disabled. The pre-bias immunity feature of the module relies on the module being in the diode-mode during start-up. When using the EZSEQUENCE ${ }^{\text {TM }}$ feature, modules goes through an internal set-up time of 10 msec , and will be in synchronous rectification mode when voltage at the SEQ pin is applied. This will result in sinking current in the module if pre-bias voltage is present at the output of the module. When pre-bias immunity during start-up is required, the EZ-SEQUENCE ${ }^{\text {TM }}$ feature must be disabled. For additional guidelines on using EZ-SEQUENCE ${ }^{\text {TM }}$ feature of Austin MicroLynx ${ }^{\text {TM }}$ II 12 V , contact your Lineage Power technical
representative for preliminary application note on output voltage sequencing using Austin Lynx II series.

Thermal Considerations

Power modules operate in a variety of thermal environments; however, sufficient cooling should be provided to help ensure reliable operation.
Considerations include ambient temperature, airflow, module power dissipation, and the need for increased reliability. A reduction in the operating temperature of the module will result in an increase in reliability. The thermal data presented here is based on physical measurements taken in a wind tunnel. The test setup is shown in Figure 33. Note that the airflow is parallel to the long axis of the module as shown in Figure 32. The derating data applies to airflow in either direction of the module's long axis.

Figure 32. Tref Temperature measurement location.

The thermal reference point, $\mathrm{T}_{\text {ref } 1}$ used in the specifications of thermal derating curves is shown in Figure 32. For reliable operation this temperature should not exceed $125^{\circ} \mathrm{C}$.
The output power of the module should not exceed the rated power of the module (Vo, set x lo,max).

Please refer to the Application Note "Thermal Characterization Process For Open-Frame BoardMounted Power Modules" for a detailed discussion of thermal aspects including maximum device temperatures.

Figure 33. Thermal Test Set-up.

Heat Transfer via Convection

Increased airflow over the module enhances the heat transfer via convection. Thermal derating curves showing the maximum output current that can be delivered by various module versus local ambient temperature (T_{A}) for natural convection and up to $1 \mathrm{~m} / \mathrm{s}(200 \mathrm{ft} . / \mathrm{min})$ are shown in the Characteristics Curves section.

Post solder Cleaning and Drying Considerations

Post solder cleaning is usually the final circuit-board assembly process prior to electrical board testing. The result of inadequate cleaning and drying can affect both the reliability of a power module and the testability of the finished circuit-board assembly. For guidance on appropriate soldering, cleaning and drying procedures, refer to Board Mounted Power Modules: Soldering and Cleaning Application Note.

Through-Hole Lead-Free Soldering Information

The RoHS-compliant through-hole products use the SAC (Sn/Ag/Cu) Pb-free solder and RoHS-compliant components. They are designed to be processed through single or dual wave soldering machines. The pins have an RoHS-compliant finish that is compatible with both Pb and Pb -free wave soldering processes. A maximum preheat rate of $3^{\circ} \mathrm{C} / \mathrm{s}$ is suggested. The wave preheat process should be such that the temperature of the power module board is kept below $210^{\circ} \mathrm{C}$. For Pb solder, the recommended pot temperature is $260^{\circ} \mathrm{C}$, while the Pb -free solder pot is $270^{\circ} \mathrm{C}$ max. Not all RoHS-compliant through-hole products can be processed with paste-through-hole Pb or Pb -free reflow process. If additional information is needed, please consult with your Lineage Power technical representative for more details.

Mechanical Outline

Dimensions are in millimeters and (inches).
Tolerances: $x . x \mathrm{~mm} \pm 0.5 \mathrm{~mm}$ ($x . x x$ in. ± 0.02 in.) [unless otherwise indicated] $x . x x \mathrm{~mm} \pm 0.25 \mathrm{~mm}(x . x x x$ in $\pm 0.010 \mathrm{in}$.

Top View

Bottom View

PIN	FUNCTION
1	Vo
2	Trim
3	GND
A	SEQ
4	VIN
5	On/Off

Recommended Pad Layout

Dimensions are in millimeters and (inches).
Tolerances: $x . x \mathrm{~mm} \pm 0.5 \mathrm{~mm}$ (x.xx in. $\pm 0.02 \mathrm{in}$.) [unless otherwise indicated] $x . x x \mathrm{~mm} \pm 0.25 \mathrm{~mm}$ ($x . x x x$ in $\pm 0.010 \mathrm{in}$.)

PIN	FUNCTION
1	Vo
2	Trim
3	GND
A	SEQ
4	VIN
5	On/Off

Through Hole Pad Layout - Back view

Ordering Information

Please contact your Lineage Power Sales Representative for pricing, availability and optional features.

Table 2. Device Codes

Device Code	Input Voltage	Output Voltage	Output Current	Efficiency $\mathbf{3 . 3 V @}$ 6A	Connector Type	Comcodes
ATA006A0X	$8.3-14 \mathrm{Vdc}$	$0.75-5.5 \mathrm{Vdc}$	6 A	89.0%	SIP	108989034
ATA006A0XZ	$8.3-14 \mathrm{Vdc}$	$0.75-5.5 \mathrm{Vdc}$	6 A	89.0%	SIP	CC109101763
ATA006A0X4	$8.3-14 \mathrm{Vdc}$	$0.75-5.5 \mathrm{Vdc}$	6 A	89.0%	SIP	108989042
ATA006A0X4Z	$8.3-14 \mathrm{Vdc}$	$0.75-5.5 \mathrm{Vdc}$	6 A	89.0%	SIP	CC109104642

-Z refers to RoHS-compliant versions.

World Wide Headquarters
Lineage Power Corporation
601 Shiloh Road, Plano, TX 75074, USA
+1-800-526-7819
(Outside U.S.A.: +1-972-244-9428)
www.lineagepower.com
e-mail: techsupport1@lineagepower.com

Asia-Pacific Headquarters

Tel: +65 65937211

Europe, Middle-East and Africa Headquarters

Tel: +49 89878067280

India Headquarters
Tel: +91 8028411633

Lineage Power reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Lineage Power DC-DC products are protected under various patents. Information on these patents is available at www.lineagepower.com/patents.
© 2009 Lineage Power Corporation, (Plano, Texas) All Intemational Rights Reserved.

[^0]: * UL is a registered trademark of Underwriters Laboratories, Inc.
 \dagger CSA is a registered trademark of Canadian Standards Association.
 $\ddagger V D E$ is a trademark of Verband Deutscher Elektrotechniker e.V.
 ** ISO is a registered trademark of the International Organization of Standards

