intersill| Zilker Labs"

Digital DC/DC PMBus 12A Module

ZL9101M

The ZL9101M is a 12A variable output step-down PMBus-compliant digital power supply. Included in the module is a high performance digital PWM controller, power MOSFETs, an inductor, and all the passive components required for a complete, highly integrated DC/DC power solution. This power module has built-in auto-compensation algorithms, which eliminates the need for manual compensation design work. The ZL9101M operates over a wide input voltage range and supports an output voltage range of 0.6 V to 3.6 V , which can be set by external resistors or via PMBus. This high efficiency power module is capable of delivering 12A. Only bulk input and output capacitors are needed to finish the design. The output voltage can be precisely regulated to as low as 0.6 V with $\pm 1 \%$ output voltage regulation over line, load, and temperature variations.

The ZL9101M features auto-compensation, internal soft-start, auto-recovery overcurrent protection, an enable option, and pre-biased output start-up capabilities.

The ZL9101M is packaged in a thermally enhanced, compact $(15 \mathrm{~mm} \times 15 \mathrm{~mm})$ and low profile $(3.5 \mathrm{~mm})$ over-molded QFN package module suitable for automated assembly by standard surface mount equipment. The ZL9101M is Pb-free and RoHS compliant.

Features

- Complete Digital Switch Mode Power Supply
- Fast Transient Response
- Auto-compensating PID Filter
- External Synchronization
- Output Voltage Tracking
- Current Sharing
- Programmable Soft-start Delay and Ramp
- Overcurrent/Undercurrent Protection
- PMBus Compliant

Applications

- Server, Telecom, and Datacom
- Industrial and Medical Equipment
- General Purpose Point of Load

Related Literature

- See AN2033, "Zilker Labs PMBus Command Set - DDC Products"
- See AN2034, "Configuring Current Sharing on the ZL2004 and ZL2006"

Notes:

1. The $I^{2} C / S M B u s$ requires pull-up resistors. Please refer to the $I^{2} C / S M B u s$ specifications for more details.
2. The DDC bus requires a pull-up resistor. The resistance will vary based on the capacitive loading of the bus (and on the number of devices connected). The $10 \mathrm{k} \Omega$ default value, assuming a maximum of 100 pF per device, provides the necessary $1 \mu \mathrm{~s}$ pull-up rise time. Please refer to the Digital-DC Bus section for more details.
3. Additional capacitance may be required to meet specific transient response targets
4. The VR, V25, VDRV, and VDD capacitors should be placed no further than 0.5 cm from the pin.

FIGURE 1. 12A APPLICATION CIRCUIT
NOTE: Figure 1 represents a typical implementation of the ZL9101M. For PMBus operation, it is recommended to tie the enable pin (EN) to SGND.

ZL9101M

Pin Configuration

> ZL9101M
> (21 LD QFN) TOP VIEW

Pin Descriptions

PIN	LABEL	TYPE	DESCRIPTION
1	SDA	1/0	Serial data.
2	SCL	1/0	Serial clock.
3	SA	1	Serial address select pin. Used to assign unique SMBus address to each module.
4	SYNC	1/0	Clock synchronization. Used for synchronization to external frequency reference.
5	PG	0	Power-good output.
6	EN	1	Enable input (factory setting active high). Pull-up to enable PWM switching and pull-down to disable PWM switching.
7	DDC	1/0	Digital-DC bus. (open drain) Interoperability between Zilker Labs modules.
8	VR	PWR	Internal 5V reference used to power internal drivers. Connect $4.7 \mu \mathrm{~F}$ bypass capacitor to this pin.
9	SGND	PWR	Signal ground. Connect to low impedance ground plane.
10	PGND	PWR	Power ground. Connect to low impedance ground plane.
11	V25	PWR	Internal 2.5 V reference used to power internal circuitry. Connect $4.7 \mu \mathrm{~F}$ bypass capacitor to this pin.
12	VDD	PWR	Input supply voltage for controller. Connect $4.7 \mu \mathrm{~F}$ bypass capacitor to this pin.
13	VDRV	PWR	Power supply for internal FET drivers. Connect 10ヶF bypass capacitor to this pin.
14(epad)	SW	PWR	Drive train switch node
15(epad)	VIN	PWR	Power supply input FET voltage.
16(epad)	PGND	PWR	Power ground. Connect to low impedance ground plane.
17(epad)	VOUT	PWR	Power supply output voltage. Output voltage from PWM.
18	FB-	I	Output voltage feedback. Connect to load return of ground regulation point.
19	FB+	I	Output voltage feedback. Connect to output regulation point.
20	VTRK	I	Tracking sense input. Used to track an external voltage source.
21	VSET	I	Output voltage selection pin. Used to set $\mathrm{V}_{\text {OUT }}$ set point and $\mathrm{V}_{\text {OUT }}$ max.

Ordering Information

PART NUMBER (Notes 1, 2, 3)	PART MARKING	TEMP RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE (Pb-Free)	PKG. DWG. \#
ZL9101MIRZ	ZL9101M	-40 to +85	21 Ld 15x15 QFN	L21.15x15

NOTES:

1. Add "-T*" suffix for tape and reel. Please refer to Tech Brief TB347 for details on reel specifications.
2. These Intersil plastic packaged products employ special material sets, molding compounds and 100% matte tin plate plus anneal (e3) termination finish. These products do contain Pb but they are RoHS compliant by EU exemption 5 (Pb in glass of cathode ray tubes, electronic components and fluorescent tubes). These Intersil RoHS compliant products are compatible with both SnPb and Pb -free soldering operations. These Intersil RoHS compliant products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ZL9101M. For more information on MSL please see Tech Brief TB363.

ZL9101M

Table of Contents

Related Literature 1
Pin Descriptions 2
Absolute Maximum Ratings (Note 4) 5
Thermal Information 5
Recommended Operating Conditions 5
Electrical Specifications 5
Typical Performance Curves 7
Derating Curves 8
Functional Description 9
I2C/SMBus Communications 9
Output Voltage Selection 9
Soft-start Delay and Ramp Times 9
Power-Good 9
Switching Frequency and PLL 10
Loop Compensation 10
Adaptive Diode Emulation. 10
Input Undervoltage Lockout 10
Output Overvoltage Protection 10
Output Pre-Bias Protection 10
Output Overcurrent Protection 11
Thermal Overload Protection 11
I2C/SMBus Module Address Selection 11
Digital-DC Bus 12
Phase Spreading 12
Output Sequencing 12
Fault Spreading 12
Active Current Sharing 12
Phase Adding/Dropping 13
Monitoring via I2C/SMBus 13
Snapshot Parameter Capture 14
Non-Volatile Memory and Device Security Features 14
Layout Guide 14
Thermal Considerations 15
Package Description 15
PCB Layout Pattern Design 15
Thermal Vias 15
Stencil Pattern Design 15
Reflow Parameters 15
Revision History 16
Products 17
Package Outline Drawing 18

Absolute Maximum Ratings (Note 4)	
DC Supply Voltage for VDD Pin	-0.3V to 15.7V
Input Voltage for VIN Pin	-0.3V to 15.7V
MOSFET Drive Reference for VR Pin	-0.3V to 6.5V
2.5V Logic Reference for V25 Pin.	-0.3V to 3V
MOSFET Driver Power for VDRV Pin	-0.3V to 7.5V
Logic I/O Voltage for DDC, EN,	
FB+, FB-, PG, SA, SCL, SDA,SYNC, VSET Pins	-0.3V to 6V
ESD Rating	
Human Body Model (Tested per JESD22-A114F).	2000V
Machine Model (Tested per JESD22-A115C)	200V
Charged Device Model (Tested per JESD22-C110D)	.1000V
Latch Up (Tested per JESD78C; Class 2, Level A).	100mA

Thermal Information

Thermal Resistance (Typical)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
QFN Package (Notes 7, 8) $\ldots \ldots \ldots \ldots$.	11.5	2.2

Junction Temperature $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Pb-Free Reflow Profile . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp

Recommended Operating Conditions

Input Supply Voltage Range, $\mathrm{V}_{\text {IN }}$	to 13.2 V
Input Supply For Controller, V_{DD} (Note 5)	4.5 V to 13.2 V
Driver Supply Voltage, $\mathrm{V}_{\text {DRV }}$	4.5 V to 6.5 V
Output Voltage Range, $\mathrm{V}_{\text {Out }}$ (Note 6).	0.54 V to 3.6V
Output Current Range, I ${ }_{\text {OUT(DC) }}$	OA to 12A
Operating Junction Temperature Range, T_{J}	$40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.
NOTES:
4. Voltage measured with respect to SGND
5. $\mathrm{V}_{I N}$ supplies the power FETs. V_{DD} supplies the controller. V_{IN} can be tied to V_{DD}. For $\mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$ should be tied to VR .
6. Includes $\pm 10 \%$ margin limits.
7. θ_{JA} is simulated in free air with device mounted on a four-layer FR-4 test board ($76.2 \times 114.3 \times 1.6 \mathrm{~mm}$) with 80%-coverage, 2 -ounce Cu on top and bottom layers, plus two, buried, one-ounce Cu layers with coverage across the entire test board area. Multiple vias were used, with via diameter $=0.3 \mathrm{~mm}$ on 1.2 mm pitch.
8. For θ_{Jc}, the "case" temperature is measured at the center of the package underside.

Electrical Specifications $V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	MIN (Note 9)	TYP (Note 10)	MAX (Note 9)	UNIT
INPUT AND SUPPLY CHARACTERISTICS					
Input Bias Supply Current, IDD	$\mathrm{f}_{\text {SW }}=571 \mathrm{kHz}$, No load	-	20	40	mA
Input Bias Shutdown Current, IDDS	EN $=0 \mathrm{~V}$; no $\mathrm{I}^{2} \mathrm{C} /$ SMBus activity	-	15.5	20	mA
Input Supply Current, IVIN	$\mathrm{V}_{\text {IN }}=13.2 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=12 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}$	-	1.32	-	A
Driver Supply Current, IVDRV	Not switching	-	190	250	$\mu \mathrm{A}$
VR Reference Output Voltage (Note 11)	$\mathrm{V}_{\mathrm{DD}}>6 \mathrm{~V}, \mathrm{l}_{\mathrm{VR}}<20 \mathrm{~mA}$	4.5	5.2	5.7	V
V25 Reference Output Voltage (Note 11)	$\mathrm{V}_{\mathrm{R}}>3 \mathrm{~V}, \mathrm{I}_{\mathrm{V} 25}<20 \mathrm{~mA}$	2.25	2.5	2.75	V
OUTPUT CHARACTERISTICS					
Output Load Current	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}$		12		A
Line Regulation Accuracy, $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{V}_{\text {IN }}$ (Note 12)	$\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$ to 13.2 V	-	0.5	-	\%
Load Regulation Accuracy, $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{I}_{\text {OUT }}$ (Note 12)	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$ to $12 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}$	-	0.5	-	\%
Peak-to-peak Output Ripple Voltage, $\Delta \mathrm{V}_{\text {OUT }}$ (Note 12)	$\mathrm{I}_{\text {OUT }}=12 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=3000 \mu \mathrm{~F}$	-	6	-	mV
Soft-start Delay Duration Range (Notes 11, 13)	Set using ${ }^{2} \mathrm{C} /$ SMBus	2	-	200	ms
Soft-start Delay Duration Accuracy (Note 11)	Turn-on delay (precise mode) (Notes 13, 14)	-	± 0.25	-	ms
	Turn-on delay (normal mode) (Note 15)	-	-0.25/+4	-	ms
	Turn-off delay (Note 15)	-	-0.25/+4	-	ms
Soft-start Ramp Duration Range (Note 11)	Set using ${ }^{1}{ }^{2} \mathrm{C}$	0	-	200	ms
Soft-start Ramp Duration Accuracy (Note 11)		-	100	-	$\mu \mathrm{s}$
DYNAMIC CHARACTERISTICS					
Voltage Change for Positive Load Step	$\begin{aligned} & \Delta \mathrm{l}_{\text {OUT }}=6 \mathrm{~A}, \text { slew rate }=2.5 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=3000 \mu \mathrm{~F} \end{aligned}$	-	3	-	\%

Electrical Specifications $V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (Continued)

PARAMETER	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 9) } \end{gathered}$	$\begin{gathered} \text { TYP } \\ \text { (Note 10) } \end{gathered}$	$\begin{gathered} \text { MAX } \\ \text { (Note 9) } \end{gathered}$	UNIT
Voltage Change for Negative Load Step	$\begin{aligned} & \Delta \mathrm{l}_{\mathrm{OUT}}=6 \mathrm{~A}, \text { slew rate }=2.5 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{OUT}}=1.2 \mathrm{~V}, \mathrm{C}_{\mathrm{OUT}}=3000 \mu \mathrm{~F} \end{aligned}$	-	3	-	\%
OSCILLATOR AND SWITCHING CHARACTERISTICS (Note 11)					
Switching Frequency Range		500	571	1000	kHz
Maximum PWM Duty Cycle	Factory setting	95	-	-	\%
Minimum SYNC Pulse Width		150	-	-	ns
Input Clock Frequency Drift Tolerance	External clock source	-13	-	13	\%
LOGIC INPUT/OUTPUT CHARACTERISTICS (Note 11)					
Logic Input Bias Current	EN, PG, SCL, SDA pins	-10	-	10	$\mu \mathrm{A}$
Logic Input Low, $\mathrm{V}_{\text {IL }}$		-	-	0.8	V
Logic Input High, V_{IH}		2.0	-	-	v
Logic Output Low, V_{OL}	$\mathrm{IOL} \leq 4 \mathrm{~mA}$ (Note 17)	-	-	0.4	v
Logic Output High, V_{OH}	$\mathrm{l}_{\mathrm{OH}} \geq-2 \mathrm{~mA}$ (Note 17)	2.25	-	-	V
FAULT PROTECTION CHARACTERISTICS (Note 11)					
UVLO Threshold Range	Configurable via $\mathrm{I}^{2} \mathrm{C} /$ SMBus	2.85	-	16	V
UVLO Set-point Accuracy		-150	-	150	mV
UVLO Hysteresis	Factory setting	-	3	-	\%
	Configurable via $\mathrm{I}^{2} \mathrm{C} /$ SMBus $^{\text {a }}$	0	-	100	\%
UVLO Delay		-	-	2.5	$\mu \mathrm{s}$
Power Good $\mathrm{V}_{\text {OUT }}$ Threshold	Factory setting	-	90	-	\% $\mathrm{V}_{\text {OUT }}$
Power Good V ${ }_{\text {OUT }}$ Hysteresis	Factory setting	-	5	-	\%
Power Good Delay (Note 16)	Configurable via ${ }^{2} \mathrm{C} /$ SMBus $^{\text {a }}$	0	-	200	ms
VSEN Undervoltage Threshold	Factory setting	-	85	-	\% V ${ }_{\text {OUT }}$
	Configurable via $\mathrm{I}^{2} \mathrm{C} /$ SMBus	0	-	110	\% V ${ }_{\text {OUT }}$
VSEN Overvoltage Threshold	Factory setting	-	115	-	$\% \mathrm{~V}_{\text {OUT }}$
	Configurable via ${ }^{2} \mathrm{C} /$ SMBus $^{\text {a }}$	0	-	115	$\% \mathrm{~V}_{\text {OUT }}$
VSEN Undervoltage Hysteresis		-	5	-	$\% \mathrm{~V}_{\text {OUT }}$
VSEN Undervoltage/Overvoltage Fault Response Time	Factory setting	-	16	-	$\mu \mathrm{s}$
	Configurable via ${ }^{2} \mathrm{C} /$ SMBus $^{\text {a }}$	5	-	60	$\mu \mathrm{s}$
Thermal Protection Threshold (Controller Junction Temperature)	Factory setting	-	125	-	${ }^{\circ} \mathrm{C}$
	Configurable via $\mathrm{I}^{2} \mathrm{C} /$ SMBus $^{\text {a }}$	-40	-	125	${ }^{\circ} \mathrm{C}$
Thermal Protection Hysteresis		-	15	-	${ }^{\circ} \mathrm{C}$

NOTES:
9. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
10. Parameters with TYP limits are not production tested unless otherwise specified.
11. Parameters are 100% tested for internal controller prior to module assembly.
12. $\mathrm{V}_{\text {OUT }}$ measured at the termination of the FB+ and FB- sense points.
13. The device requires a delay period following an enable signal and prior to ramping its output. Precise timing mode limits this delay period to approximately 2 ms , where in normal mode it may vary up to 4 ms .
14. Precise ramp timing mode is only valid when using the $E N$ pin to enable the device rather than PMBus enable.
15. The devices may require up to a 4 ms delay following the assertion of the enable signal (normal mode) or following the de-assertion of the enable signal.
16. Factory setting for Power Good delay is set to the same value as the soft-start ramp time.
17. Nominal capacitance of logic pins is 5 pF .

Typical Performance Curves operating conditions: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, no air flow, $\mathrm{F}_{\mathrm{SW}}=571 \mathrm{kHz} . \mathrm{V}_{\mathrm{DRV}}=5 \mathrm{~V}$. $C_{\text {OUT }}=3000 \mu \mathrm{~F}$. Typical values are used unless otherwise noted.

FIGURE 2. EFFICIENCY, $\mathrm{V}_{\mathbf{I N}}=\mathbf{5 V}$, FOR VARIOUS OUTPUT VOLTAGES LISTED

FIGURE 4. EFFICIENCY, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, FOR VARIOUS OUTPUT VOLTAGES LISTED

FIGURE 6. DYNAMIC RESPONSE, LOADING

FIGURE 3. EFFICIENCY, $\mathrm{V}_{\mathrm{IN}}=9 \mathrm{~V}$, FOR VARIOUS OUTPUT VOLTAGES LISTED

FIGURE 5. DYNAMIC RESPONSE, UNLOADING

FIGURE 7. SOFT-START RAMP-UP

FIGURE 8. RAMP-DOWN

ZL9101M

Derating Curves Operating conditions: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, no air flow, $\mathrm{F}_{\text {SW }}=571 \mathrm{kHz} . \mathrm{v}_{\mathrm{DRV}}=5 \mathrm{~V} . \mathrm{C}_{\mathrm{OUT}}=3000 \mu \mathrm{~F}$. Typical values are used unless otherwise noted.

FIGURE 9. DERATING CURVE, $5 \mathrm{~V}_{\text {IN }}$, FOR VARIOUS OUTPUT VOLTAGES LISTED

FIGURE 11. POWER LOSS CURVE, $5 \mathrm{~V}_{\text {IN }}$, FOR VARIOUS OUTPUT VOLTAGES LISTED

FIGURE 10. DERATING CURVE, $12 V_{\text {IN }}$, FOR VARIOUS OUTPUT VOLTAGES LISTED

FIGURE 12. POWER LOSS CURVE, $12 \mathrm{~V}_{\text {IN }}$, FOR VARIOUS OUTPUT VOLTAGES LISTED

Functional Description

$\mathbf{I}^{\mathbf{2}} \mathbf{C} /$ SMBus Communications

The ZL9101M provides an $I^{2} \mathrm{C} /$ SMBus digital interface that enables the user to configure all aspects of the module operation as well as monitor the input and output parameters. The ZL9101M can be used with any $I^{2} \mathrm{C}$ host device. In addition, the module is compatible with SMBus version 2.0. Pull-up resistors are required on the $\mathrm{I}^{2} \mathrm{C} /$ SMBus as specified in the SMBus 2.0^{2} specification. The ZL9101M accepts most standard PMBus commands. When controlling the device with PMBus commands, it is recommended that the enable pin is tied to SGND.
The SMBus device address and VOUT_MAX are the only parameters that must be set by external pins. All other device parameters can be set via the $I^{2} \mathrm{C} /$ SMBus. The device address is set using the SA pin. VOUT_MAX is determined as 10% greater than the voltage set by the VSET pin. Standard 1\% resistor values are used between the respective pin and SGND.

Output Voltage Selection

The output voltage may be set to a voltage between 0.6 V and 3.6 V provided that the input voltage is higher than the desired output voltage by an amount sufficient to prevent the device from exceeding its maximum duty cycle specification.

The VSET pin is used to set the output voltage to levels as shown in Table 1. The R RET resistor is placed between the VSET pin and SGND.

TABLE 1. OUTPUT VOLTAGE RESISTOR SETTINGS

VOUT (V)	$\mathrm{R}_{\text {SET }}$ (k Ω)
0.60	10
0.65	11
0.70	12.1
0.75	13.3
0.80	14.7
0.85	16.2
0.90	17.8
0.95	19.6
1.00	21.5
1.05	23.7
1.10	26.1
1.15	28.7
1.20	31.6
1.25	34.8
1.30	38.3
1.40	42.2
1.50	46.4
1.60	51.1
1.70	56.2

TABLE 1. OUTPUT VOLTAGE RESISTOR SETTINGS (Continued)

$\mathbf{V}_{\text {OUT }}$ (\mathbf{V})	$\mathbf{R}_{\text {SET }}$ $(\mathbf{k \Omega})$
1.80	61.9
1.90	68.1
2.00	75
2.10	82.5
2.20	90.9
2.30	100
2.50	110
2.80	121
3.00	133
3.30	147

The output voltage may also be set to any value between 0.6 V and 3.6 V using a PMBus command over the $\mathrm{I}^{2} \mathrm{C}$ /SMBus interface. See Application Note AN2O33 for details.
The RSET resistor program places an upper limit in output voltage setting through PMBUS programming to 10% above the value set by the resistor.

Soft-start Delay and Ramp Times

It may be necessary to set a delay from when an enable signal is received until the output voltage starts to ramp to its target value. In addition, the designer may wish to precisely set the time required for $\mathrm{V}_{\text {OUT }}$ to ramp to its target value after the delay period has expired. These features may be used as part of an overall in-rush current management strategy or to precisely control how fast a load IC is turned on. The ZL9101M gives the system designer several options for precisely and independently controlling both the delay and ramp time periods.
The soft-start delay period begins when the EN pin is asserted and ends when the delay time expires.

The soft-start delay and ramp times are set to custom values via the $I^{2} \mathrm{C}$ /SMBus interface. When the delay time is set to 0 ms , the device begins its ramp-up after the internal circuitry has initialized (approximately 2 ms). When the soft-start ramp period is set to 0 ms , the output ramps up as quickly as the output load capacitance and loop settings allow. It is generally recommended to set the soft-start ramp to a value greater than 500 μ s to prevent inadvertent fault conditions due to excessive in-rush current.

Power-Good

The ZL9101M provides a Power-Good (PG) signal that indicates the output voltage is within a specified tolerance of its target level and no fault condition exists. By default, the PG pin asserts if the output is within 10% of the target voltage. These limits and the polarity of the pin may be changed via the $\mathrm{I}^{2} \mathrm{C}$ /SMBus interface. See Application Note AN2033 for details.
A PG delay period is defined as the time from when all conditions within the ZL9101M for asserting PG are met to when the PG pin is actually asserted. This feature is commonly used instead of
using an external reset controller to control external digital logic. By default, the ZL9101M PG delay is set equal to the soft-start ramp time setting. Therefore, if the soft-start ramp time is set to 10 ms , the PG delay is set to 10 ms . The PG delay may be set independently of the soft-start ramp using the $I^{2} \mathrm{C} /$ SMBus as described in Application Note AN2O33.

Switching Frequency and PLL

The ZL9101M incorporates an internal phase-locked loop (PLL) to clock the internal circuitry. The PLL can be driven by an external clock source connected to the SYNC pin. When using the internal oscillator, the SYNC pin can be configured as a clock source.

The internal switching frequency of the ZL9101M is 571 kHz .

Loop Compensation

The ZL9101M operates as a voltage-mode synchronous buck controller with a fixed frequency PWM scheme. The module is internally compensated via the $I^{2} \mathrm{C} /$ SMBus interface.

The ZL9101M has an auto compensation feature that measures the characteristics of the power train and calculates the proper tap coefficients. By default, auto compensation is configured to execute one time after ramp with 50% Auto Comp Gain with Power-Good asserted immediately after the first Auto Comp cycle completes.
Please refer to Application Note AN2033 for further details.

Adaptive Diode Emulation

Adaptive diode emulation mode turns off the low-side FET gate drive at low load currents to prevent the inductor current from going negative, reducing the energy losses and increasing overall efficiency. Diode emulation is available to single-phase devices only.

Note: the overall bandwidth of the device may be reduced when in diode emulation mode. Disabling the diode emulation prior to applying significant load steps is recommended.

Input Undervoltage Lockout

The input undervoltage lockout (UVLO) prevents the ZL9101M from operating when the input falls below a preset threshold, indicating the input supply is out of its specified range. The UVLO threshold ($\mathrm{V}_{\text {UVLO }}$) can be set between 2.85 V and 16 V using the $1^{2} \mathrm{C} /$ SMBus interface.

Once an input undervoltage fault condition occurs, the device can respond in a number of ways, as follows:

1. Continue operating without interruption.
2. Continue operating for a given delay period, followed by shutdown if the fault still exists. The device remains in shutdown until instructed to restart.
3. Initiate an immediate shutdown until the fault is cleared. The user can select a specific number of retry attempts.
The default response from a UVLO fault is an immediate shutdown of the module. The controller continuously checks for the presence of the fault condition. If the fault condition is no longer present, the ZL9101M is re-enabled.

Please refer to Application Note AN2033 for details on how to configure the UVLO threshold or to select specific UVLO fault response options via the $\mathrm{I}^{2} \mathrm{C} /$ SMBus interface.

Output Overvoltage Protection

The ZL9101M offers an internal output overvoltage protection circuit that can be used to protect sensitive load circuitry from being subjected to a voltage higher than its prescribed limits. A hardware comparator is used to compare the actual output voltage (seen at the FB+ pin) to a threshold set to 15% higher than the target output voltage (the default setting). If the FB+ voltage exceeds this threshold, the PG pin de-asserts, and the controller can then respond in a number of ways, as follows:

1. Initiate an immediate shutdown until the fault is cleared. The user can select a specific number of retry attempts.
2. Turn off the high-side MOSFET and turn on the low-side MOSFET. The low-side MOSFET remains ON until the device attempts a restart.
The default response from an overvoltage fault is to immediately shut down. The controller continuously checks for the presence of the fault condition, and when the fault condition no longer exists, the device is re-enabled.
For continuous overvoltage protection when operating from an external clock, the only allowed response is an immediate shutdown.
Please refer to Application Note AN2033 for details on how to select specific overvoltage fault response options via $I^{2} \mathrm{C} /$ SMBus. 2

Output Pre-Bias Protection

An output pre-bias condition exists when an externally applied voltage is present on a power supply's output before the power supply's control IC is enabled. Certain applications require that the converter not be allowed to sink current during start-up if a pre-bias condition exists at the output. The ZL9101M provides pre-bias protection by sampling the output voltage prior to initiating an output ramp.
If a pre-bias voltage lower than the target voltage exists after the pre-configured delay period has expired, the target voltage is set to match the existing pre-bias voltage, and both drivers are enabled. The output voltage is then ramped to the final regulation value at the preconfigured ramp rate.
The actual time the output takes to ramp from the pre-bias voltage to the target voltage varies, depending on the pre-bias voltage, however, the total time elapsed from when the delay period expires and when the output reaches its target value will match the pre-configured ramp time. See Figure 13.

FIGURE 13. OUTPUT RESPONSES TO PRE-BIAS VOLTAGES
If a pre-bias voltage higher than the target voltage exists after the pre-configured delay period has expired, the target voltage is set to match the existing pre-bias voltage, and both drivers are enabled with a PWM duty cycle that would ideally create the pre-bias voltage.

Once the pre-configured soft-start ramp period has expired, the PG pin is asserted (assuming the pre-bias voltage is not higher than the overvoltage limit). The PWM then adjusts its duty cycle to match the original target voltage, and the output ramps down to the preconfigured output voltage.

If a pre-bias voltage higher than the overvoltage limit exists, the device does not initiate a turn-on sequence and declares an overvoltage fault condition to exist. In this case, the device responds based on the output overvoltage fault response method that has been selected. See "Output Overvoltage Protection" on page 10 for response options due to an overvoltage condition.
Note that pre-bias protection is not offered for current sharing groups that also have tracking enabled. V_{DD} must be tied to V_{IN} for proper prebias start-up in single module operation.

Output Overcurrent Protection

The ZL9101M can protect the power supply from damage if the output is shorted to ground or if an overload condition is imposed on the output. The following overcurrent protection response options are available:

1. Initiate a shutdown and attempt to restart an infinite number of times with a preset delay period between attempts.
2. Initiate a shutdown and attempt to restart a preset number of times with a preset delay period between attempts.
3. Continue operating for a given delay period, followed by shutdown if the fault still exists.
4. Continue operating through the fault (this could result in permanent damage to the power supply).
5. Initiate an immediate shutdown.

The default response from an overcurrent fault is an immediate shutdown of the controller. The controller continuously checks for the presence of the fault condition, and if the fault condition no longer exists, the device is re-enabled.
Please refer to Application Note AN2033 for details on how to select specific overcurrent fault response options via ${ }^{2} \mathrm{C} /$ SMBus.

Thermal Overload Protection

The ZL9101M includes a thermal sensor that continuously measures the internal temperature of the module and shuts down the controller when the temperature exceeds the preset limit. The default temperature limit is set to $+125^{\circ} \mathrm{C}$ in the factory, but the user may set the limit to a different value if desired. See Application Note AN2033 for details. Note that setting a higher thermal limit via the $\mathrm{I}^{2} \mathrm{C}$ /SMBus interface may result in permanent damage to the controller. Once the module has been disabled due to an internal temperature fault, the user may select one of several fault response options as follows:

1. Initiate a shutdown and attempt to restart an infinite number of times with a preset delay period between attempts.
2. Initiate a shutdown and attempt to restart a preset number of times with a preset delay period between attempts.
3. Continue operating for a given delay period, followed by shutdown if the fault still exists.
4. Continue operating through the fault (this could result in permanent damage to the power supply).
5. Initiate an immediate shutdown.

If the user has configured the module to restart, the controller waits the preset delay period (if configured to do so) and then checks the module temperature. If the temperature has dropped below a threshold that is approximately $+15^{\circ} \mathrm{C}$ lower than the selected temperature fault limit, the controller attempts to re-start. If the temperature still exceeds the fault limit, the controller waits the preset delay period and retries again.
The default response from a temperature fault is an immediate shutdown of the module. The controller continuously checks for the fault condition, and once the fault has cleared, the ZL9101M is re-enabled.
Please refer to Application Note AN2033 for details on how to select specific temperature fault response options via $1^{2} \mathrm{C} /$ SMBus.

$\mathbf{I}^{\mathbf{2}} \mathbf{C} /$ SMBus Module Address Selection

Each module must have its own unique serial address to distinguish between other devices on the bus. The module address is set by connecting a resistor between the SA pin and SGND. Table 2 lists the available module addresses.

TABLE 2. SMBus ADDRESS RESISTOR SELECTION

$\mathrm{R}_{\text {SA }}(\mathrm{k} \Omega$)	SMBus ADDRESS
10	0x19
11	$0 \times 1 \mathrm{~A}$
12.1	0x1B
13.3	0x1C
14.7	0x1D
16.2	0x1E
17.8	0x1F
19.6	0x20
21.5	0×21
23.7	0×22
26.1, or connect to SGND	0×23
28.7, or Open	0x24
31.6, or connect to V25 or VR	0×25
34.8	0x26
38.3	0x27
42.2	0×28
46.4	0x29
51.1	$0 \times 2 \mathrm{~A}$
56.2	0x2B
61.9	0x2C
68.1	0x2D
75	0x2E
82.5	0x2F
90.9	0×30
100	0×31

Digital-DC Bus

The Digital-DC Communications (DDC) bus is used to communicate between Zilker Labs Digital-DC modules and devices. This dedicated bus provides the communication channel between devices for features such as sequencing, fault spreading, and current sharing. The DDC pin on all Digital-DC devices in an application should be connected together. A pull-up resistor is required on the DDC bus in order to guarantee the rise time as shown in Equation 1:

$$
\begin{equation*}
\text { Rise Time }=R_{P U} * C_{\text {LOAD }} \approx 1 \mu \mathrm{~s} \tag{EQ.1}
\end{equation*}
$$

where $R_{P U}$ is the DDC bus pull-up resistance and $C_{\text {LOAD }}$ is the bus loading. The pull-up resistor may be tied to an external 3.3 V or 5 V supply as long as this voltage is present prior to or during device power-up. As rules of thumb, each device connected to the DDC bus presents approximately 10pF of capacitive loading, and each inch of FR4 PCB trace introduces approximately 2 pF . The ideal design uses a central pull-up resistor that is well-matched to the total load capacitance. The minimum pull-up resistance
should be limited to a value that enables any device to assert the bus to a voltage that ensures a logic 0 (typically 0.8 V at the device monitoring point), given the pull-up voltage and the pull-down current capability of the ZL9101M (nominally 4mA).

Phase Spreading

When multiple point-of-load converters share a common DC input supply, it is desirable to adjust the clock phase offset of each device such that not all devices start to switch simultaneously. Setting each converter to start its switching cycle at a different point in time, can dramatically reduce input capacitance requirements and efficiency losses. Since the peak current drawn from the input supply is effectively spread out over a period of time, the peak current drawn at any given moment is reduced, and the power losses proportional to the $\mathrm{I}_{\mathrm{RMS}}{ }^{2}$ are reduced dramatically.

To enable phase spreading, all converters must be synchronized to the same switching clock. The phase offset of each device may also be set to any value between 0° and 360° in 22.5° increments via the $\mathrm{I}^{2} \mathrm{C} /$ SMBus interface. Refer to Application $^{\circ}$ Note AN2033 for further details.

Output Sequencing

A group of Digital-DC modules or devices may be configured to power-up in a predetermined sequence. This feature is especially useful when powering advanced processors, FPGAs and ASICs that require one supply to reach its operating voltage; prior to another supply reaching its operating voltage in order to avoid latch-up. Multi-device sequencing can be achieved by configuring each device through the $\mathrm{I}^{2} \mathrm{C} /$ SMBus interface.

Multiple device sequencing is configured by issuing PMBus commands to assign the preceding device in the sequencing chain as well as the device that follows in the sequencing chain.
The Enable pins of all devices in a sequencing group must be tied together and driven high to initiate a sequenced turn-on of the group. Enable must be driven low to initiate a sequenced turnoff of the group.
Refer to Application Note AN2033 for details on sequencing via the $\mathrm{I}^{2} \mathrm{C} /$ SMBus interface.

Fault Spreading

Digital DC modules and devices can be configured to broadcast a fault event over the DDC bus to the other devices in the group. When a non-destructive fault occurs and the device is configured to shut down on a fault, the device shuts down and broadcasts the fault event over the DDC bus. The other devices on the DDC bus shut down simultaneously, if configured to do so, and attempt to re-start in their prescribed order, if configured to do so.

Active Current Sharing

Paralleling multiple ZL9101M modules can be used to increase the output current capability of a single power rail. By connecting the DDC pins of each module together and configuring the modules as a current sharing rail, the units share the current equally within a few percent. Figure 14 illustrates a typical connection for two modules.

FIGURE 14. CURRENT SHARING GROUP
The ZL9101M uses a low-bandwidth, first-order digital current sharing technique to balance the unequal module output loading by aligning the load lines of member modules to a reference module.

Droop resistance is used to add artificial resistance in the output voltage path to control the slope of the load line curve, calibrating out the physical parasitic mismatches due to power train components and PCB layout.

Upon system start-up, the module with the lowest member position as selected in ISHARE_CONFIG is defined as the reference module. The remaining modules are members. The reference module broadcasts its current over the DDC bus. The members use the reference current information to trim their voltages ($\mathrm{V}_{\text {MEMBER }}$) to balance the current loading of each module in the system.

FIGURE 15. ACTIVE CURRENT SHARING

Figure 15 shows that, for load lines with identical slopes, the member voltage is increased towards the reference voltage which closes the gap between the inductor currents.

The relation between reference and member current and voltage is given by Equation 2:
$\mathrm{V}_{\text {MEMBER }}=\mathrm{V}_{\text {OUT }}+\mathrm{R} \times\left(\mathrm{I}_{\text {REFERENCE }}-\mathrm{I}_{\text {MEMBER }}\right)$
where R is the value of the droop resistance.

The ISHARE_CONFIG command is used to configure the module for active current sharing. The default setting is a stand-alone non-current sharing module. A current sharing rail can be part of a system sequencing group.
For fault configuration, the current share rail is configured in a quasi-redundant mode. In this mode, when a member module fails, the remaining members continue to operate and attempt to maintain regulation. Of the remaining modules, the module with the lowest member position becomes the reference. If fault spreading is enabled, the current share rail failure is not broadcast until the entire current share rail fails.
The phase offset of (multi-phase) current sharing modules is automatically set to a value between 0° and 337.5° in 22.5° increments as in Equation 3:

Phase Offset= SMBus Address[4:0] - Current
Share Position*22.5 ${ }^{\circ}$
Please refer to Application Note AN2034 for additional details on current sharing.

Phase Adding/Dropping

The ZL9101M allows multiple power converters to be connected in parallel to supply higher load currents than can be addressed using a single-phase design. In doing so, the power converter is optimized at a load current range that requires all phases to be operational. During periods of light loading, it may be beneficial to disable one or more phases to eliminate the current drain and switching losses associated with those phases, resulting in higher efficiency.
The ZL9101M offers the ability to add and drop phases using a PMBus command in response to an observed load current change. All phases in a current share rail are considered active prior to the current sharing rail ramp to power-good.
Any member of the current sharing rail can be dropped. If the reference module is dropped, the remaining active module with the lowest member position becomes the new reference.

Additionally, any change to the number of members of a current sharing rail will precipitate autonomous phase distribution within the rail where all active phases realign their phase position based on their order within the number of active members.

If the members of a current sharing rail are forced to shut down due to an observed fault, all members of the rail attempt to re-start simultaneously after the fault has cleared.

Monitoring via $\mathbf{I}^{\mathbf{2}} \mathbf{C} / \mathbf{S M B u s}$

A system controller can monitor a wide variety of different ZL9101M system parameters through the $I^{2} \mathrm{C} /$ SMBus interface.
The module can monitor for any number of power conversion parameters including but not limited to the following:

- Input voltage/Output voltage
- Output current
- Internal temperature
- Switching frequency
- Duty cycle

Please refer to Application Note AN2033 for details on how to monitor specific parameters via the $\mathrm{I}^{2} \mathrm{C} /$ SMBus interface. 2

Snapshot Parameter Capture

The ZL9101M offers a special feature that enables the user to capture parametric data during normal operation or following a fault. The SnapShot functionality is enabled by setting bit 1 of MISC_CONFIG to 1.

See AN2033 for details on using SnapShot in addition to the parameters supported. The SnapShot feature enables the user to read parameters via a block read transfer through the SMBus. This can be done during normal operation, although it should be noted that reading the $\mathbf{2 2}$ bytes occupies the SMBus for some time.

The SNAPSHOT_CONTROL command enables the user to store the SnapShot parameters to Flash memory in response to a pending fault, as well as to read the stored data from Flash memory after a fault has occurred. Table 3 describes the usage of this command. Automatic writes to Flash memory following a fault are triggered when any fault threshold level is exceeded, provided that the specific fault's response is to shut down (writing to Flash memory is not allowed if the device is configured to re-try following the specific fault condition). It should also be noted that the module's V_{DD} voltage must be maintained during the time when the controller is writing the data to Flash memory; a process that requires between 700μ s to $1400 \mu \mathrm{~s}$, depending on whether the data is set up for a block write. Undesirable results may be observed if the device's V_{DD} supply drops below 3.0 V during this process.

TABLE 3. SNAPSHOT_CONTROL COMMAND

| DATA
 VALUE | DESCRIPTION |
| :---: | :--- |$|$| D | Copies current SNAPSHOT values from Flash memory to
 RAM for immediate access using SNAPSHOT command. |
| :---: | :--- |
| 2 | Writes current SNAPSHOT values to Flash memory. Only
 available when device is disabled. |

If the module experiences a fault and power is lost, the user can extract the last SnapShot parameters stored during the fault by writing a 1 to SNAPSHOT_CONTROL (transfers data from Flash memory to RAM) and then issuing a SNAPSHOT command (reads data from RAM via SMBus).

Non-Volatile Memory and Device Security Features

The ZL9101M has internal non-volatile memory where user configurations are stored. Integrated security measures ensure that the user can only restore the module to a level that has been made available to them.

During the initialization process, the ZL9101M checks for stored values contained in its internal non-volatile memory. The ZL9101M offers two internal memory storage units that are accessible by the user as follows:

1. Default Store: The ZL9101M has a default configuration that is stored in the default store in the controller. The module can be restored to its default settings by issuing a RESTORE_DEFAULT_ALL command over the SMBus.
2. User Store: The user can modify certain power supply settings as described in this data sheet. The user stores their configuration in the user store.
Please refer to Application Note AN2033 for details on how to set specific security measures via the $I^{2} \mathrm{C} /$ SMBus interface. $^{\text {S }}$

Layout Guide

To achieve stable operation, low losses, and good thermal performance some layout considerations are necessary (Figure 16).

- Establish a continuous ground plane connecting SGND (pin 9), PGND (pin 10), and PGND (pin 16).
- Place a high frequency ceramic capacitor between (1) VIN and PGND (pin 16), (2) VOUT and PGND (pin 16) and (3) bypass capacitors between VDRV, VDD, V25, VR and the ground plane, as close to the module as possible to minimize high frequency noise. High frequency ceramic capacitors close to the module between VOUT and PGND will help to minimize noise at the output ripple.
- Use large copper areas for power path (VIN, PGND, VOUT) to minimize conduction loss and thermal stress. Also, use multiple vias to connect the power planes in different layers.
- Connect remote sensed traces to the regulation point to achieve a tight output voltage regulation, and keep them in parallel. Route a trace from FB- to a location near the load ground, and a trace from FB+ to the point-of-load where the tight output voltage is desired.
- Avoid routing any sensitive signal traces, such as the VOUT, FB+, FB- sensing point near the PHASE pin.

FIGURE 16. RECOMMENDED LAYOUT

Thermal Considerations

Experimental power loss curves along with θ_{JA} from thermal modeling analysis can be used to evaluate the thermal consideration for the module. The derating curves are derived from the maximum power allowed while maintaining the temperature below the maximum junction temperature of $+125^{\circ} \mathrm{C}$. In actual application, other heat sources and design margin should be considered.

Package Description

The structure of the ZL9101M belongs to the Quad Flat-pack No-lead package (QFN). This kind of package has advantages, such as good thermal and electrical conductivity, low weight and small size. The QFN package is applicable for surface mounting technology and is being more readily used in the industry. The ZL9101M contains several types of devices, including resistors, capacitors, inductors and control ICs. The ZL9101M is a copper lead-frame based package with exposed copper thermal pads, which have good electrical and thermal conductivity. The copper lead frame and multi component assembly is overmolded with polymer mold compound to protect these devices.
The package outline and typical PCB layout pattern design and typical stencil pattern design are shown on the second page of the package outline drawing L21.15x15 on page 18. The module has a small size of $15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 3.5 \mathrm{~mm}$. Figure 17 shows typical reflow profile parameters. These guidelines are general design rules. Users could modify parameters according to their application.

PCB Layout Pattern Design

The bottom of ZL9101M is a lead-frame footprint, which is attached to the PCB by surface mounting process. The PCB layout pattern is shown on the second page of the Package Outline Drawing L21.15×15 on page 18. The PCB layout pattern is essentially 1:1 with the QFN exposed pad and I/O termination dimensions, except for the PCB lands being a slightly extended distance of 0.2 mm (0.4 mm max) longer than the QFN terminations, which allows for solder filleting around the periphery of the package. This ensures a more complete and inspectable solder joint. The thermal lands on the PCB layout should match 1:1 with the package exposed die pads.

Thermal Vias

A grid of 1.0 mm to 1.2 mm pitch thermal vias, which drops down and connects to buried copper plane(s), should be placed under the thermal land. The vias should be about 0.3 mm to 0.33 mm in diameter with the barrel plated to about 1.0 ounce copper. Although adding more vias (by decreasing via pitch) will improve the thermal performance, diminishing returns will be seen as more and more vias are added. Simply use as many vias as practical for the thermal land size and your board design rules allow.

Stencil Pattern Design

Reflowed solder joints on the perimeter I/O lands should have about a $50 \mu \mathrm{~m}$ to $75 \mu \mathrm{~m}$ (2 mil to 3 mil) standoff height. The solder paste stencil design is the first step in developing optimized, reliable solder joins. Stencil aperture size to land size ratio should typically be 1:1. The aperture width may be reduced slightly to help
prevent solder bridging between adjacent I/O lands. To reduce solder paste volume on the larger thermal lands, it is recommended that an array of smaller apertures be used instead of one large aperture. It is recommended that the stencil printing area cover 50% to 80% of the PCB layout pattern. A typical solder stencil pattern is shown on the second page of the Package Outline Drawing L21.15×15 on page 18. The gap width between pad to pad is 0.6 mm . The user should consider the symmetry of the whole stencil pattern when designing its pads. A laser cut, stainless steel stencil with electropolished trapezoidal walls is recommended. Electropolishing "smooths" the aperture walls resulting in reduced surface friction and better paste release which reduces voids. Using a Trapezoidal Section Aperture (TSA) also promotes paste release and forms a "brick like" paste deposit that assists in firm component placement. A 0.1 mm to 0.15 mm stencil thickness is recommended for this large pitch (1.3mm) QFN.

Reflow Parameters

Due to the low mount height of the QFN, "No Clean" Type 3 solder paste per ANSI/J-STD-005 is recommended. Nitrogen purge is also recommended during reflow. A system board reflow profile depends on the thermal mass of the entire populated board, so it is not practical to define a specific soldering profile just for the QFN. The profile given in Figure 17 is provided as a guideline, to be customized for varying manufacturing practices and applications.

FIGURE 17. TYPICAL REFLOW PROFILE

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

DATE	REVISION	CHANGE
11/23/11	FN7669.4	- On page 1 1st paragraph - changed the output voltage range from 4 V to 3.6 V .
10/18/2011	FN7669.3	- On page 1, added 3rd sentence: "This power module has built-in auto-compensation algorithms, which eliminates the need for manual compensation design work." Under "Features," added 3rd bullet, "Auto Compensating PID Filter" - On page 2, "Pin Descriptions": add "Connect $4.7 \mu \mathrm{~F}$ bypass capacitor to this pin." to Description column for Pins 8, 11, and 12. - On page 5, "Recommended Operating Conditions": changed "Output Voltage Range, VOUT" from " 0.54 V to 4 V " to " 0.54 V to 3.6 V "; changed "Output Current Range, IOUT(DC)" from "OA to 15 A " to " 0 A to 12 A ". - On page 5, "Electrical Specifications": - Input Bias Shutdown Current, IDDS EN = 0 V: changed TYP from 9.5 to 15.5; changed MAX from 12 to 20. - Input Supply Current, IVIN: changed Conditions from VIN = 13.2V, IOUT = 15A, VOUT $=1.2 \mathrm{~V}$ to $\mathrm{VIN}=$ 13.2 V , IOUT = 12A, VOUT = 1.2V. Changed TYP from 1.5 to 1.32. Removed MAX value of 2. - Driver Supply Current, IVDRV: changed MAX from 220 to 250. - Added new parameter: Output Load Current - On page 6, Electrical Specs (cont.) for Switching Frequency Range: changed MIN from 590 to 500, TYP from 615 to 571, MAX from 630 to 1000 kHz. - From page 9, "Functional Description" to end of datasheet: replaced content. - On page 7: replaced Figures 2, 3, and 4 (efficiency curves). - On page 8: replaced Figures 9 \& 10 (derating curves); added new Figures 11 and 12 (power loss curves). - On page 18: "Package Outline Drawing" "L21.15x15 21 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (PUNCH QFN) Rev 2, 8/11": replaced Rev 0, 10/10, with Rev 2, 8/11. Change reason, Rev 1: Updated POD to include two decimal places for dimensions to resolve round off error in alignment of package and recommended land pattern. Change reason, Rev 2: In Bottom View on page 1: Changed 17×0.80 To: 16 $x 0.80$. Added in a new width dimension on pin 11 of " 1×0.76 ". - Global: changed frequency from 615 kHz to 571 kHz , including in Electrical Spec table, Conditions column for Input Bias Supply Current, IDD; and TYP value for Switching Frequency Range. Changed 17A to 12A throughout.
3/18/2011	FN7669.2	On page 1 in Figure 1, changed VIN in upper right from " 5 V to 12 V " to "4.5V to 13.2 V " In "Recommended Operating Conditions" on page 5: Changed "Input Supply Voltage Range, VIN" from " 5 V to 13.2 V " to " 4.5 V to 13.2 V " Changed "Input Supply for Controller, VDD" from " 5 V to 13.2 V " to " 4.5 V to 13.2 V "
1/20/2011	FN7669.1	On page 5 Electrical Spec Table under Input and Supply Characteristic - Parameter "Input Supply Current, IVIN" conditions column changed from " $\mathrm{V}_{I N}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=15 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}$ " to " $\mathrm{V}_{\mathrm{IN}}=13.2 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=15 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}$. Under Output Characteristics - Parameter "Line Regulation Accuracy" conditions column changed from $" \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$ to 14 V " to " $\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$ to 13.2 V ".
1/11/2011		On page 1, under Features, changed "Tracking" to "Output Voltage Tracking" On page 1, Figure 1, added footnote 4. "The VR, V25, VDRV, and VDD capacitors should be placed no further than 0.5 cm from the pin." On page 5, under "Absolute Maximum Ratings", changed value: DC Supply Voltage for VDD Pin from 16V to 15.7V On page 5, under "Absolute Maximum Ratings", changed value: Input Voltage for VIN Pin from 16V to 15.7V On page 5, under Recommended Operating Conditions, changed value: Input Supply Voltage Range, Vin from 14 V to 13.2 V On page 5, under Recommended Operating Conditions, changed value: Input Supply For Controller, VDD from 14 V to 13.2 V On page 6, Note 11, changed "... for internal IC prior ..." to "... for internal controller prior ..." On page 7, Figure 7, changed title from "Ramp-up" to "Soft-start Ramp-up" On page 8, Figure 9, changed labels to from V to $\mathrm{V}_{\text {OUT }}$ (e.g. $3.3 \mathrm{~V}_{\text {OUT, }} 1^{1.0 \mathrm{~V}_{\text {OUT }} \text {) }}$ On page 8, Figure 10, changed labels to from V to $V_{\text {OUT }}$ (e.g. $3.3 \mathrm{~V}_{\text {OUT, }} 1^{\left.1.0 \mathrm{~V}_{\text {OUT }}\right)}$
12/20/2010	FN7669.0	Initial release

ZL9101M

Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ZL9101M

To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff
FITs are available from our website at http://rel.intersil.com/reports/search.php without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

L21.15x15
21 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (PUNCH QFN)
Rev 2, 8/11

TOP VIEW

 STENCIL PATTERN WITH SQUARE PADS-1

NOTES:

1. Dimensions are in millimeters.
2. Unless otherwise specified, tolerance : Decimal ± 0.2; Body Tolerance $\pm 0.2 \mathrm{~mm}$
3. The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 indentifier may be either a mold or mark feature.
