

APPLICATIONS

- ➤ PC-to-Peripheral Data Links
- ➤ Motor Controller Triggering
- ➤ Ethernet LANs
- ➤ Medical Instruments
- ➤ Automotive Electronics
- ➤ Digitized Video and HDTV
- ➤ Sonet/SDH Receivers
- ➤ Robotics Communications
- ➤ Isolation from Lightning and Voltage Transients

DESCRIPTION

The IF-D98 is a very high-speed photologic detector housed in a "connector-less" style plastic fiber optic package. The detector contains an IC with a photodiode, linear amplifier and Schmitt trigger featuring an ACT logic compatible totem-pole output. Optical response of the IF-D98 extends from 400 to 1050 nm, making it compatible with a wide range of LED and laser diode sources. The detector package features an internal micro-lens, and a precision-molded PBT housing ensures efficient optical coupling with standard 1000 µm core plastic fiber cable.

APPLICATION HIGHLIGHTS

The fast transition times of the IF-D98 make it suitable for high-speed digital data links. Link distances in excess of 75 meters at data rates of 155 Mbps are possible using standard 1000 μm core plastic fiber and an IF-E99 LED. The integrated design of the IF-D98 provides simple, cost-effective implementation in a variety of digital applications.

FEATURES

- ◆ No Optical Design Required
- ♦ Mates with Standard 1000 µm Core Jacketed Plastic Fiber Cable
- ◆ Internal Micro-Lens for Efficient Coupling
- ◆ Inexpensive Plastic Connector Housing
- ◆ Connector-Less Fiber Termination and Connection
- ◆ Interference-Free Transmission from Light-Tight Housing
- ◆ Totem-Pole Output

MAXIMUM RATINGS

 $(T_A = 25^{\circ}C)$

Operating Temperature Range $(T_{\mbox{\scriptsize OP}})$ 20° to 70°C
Storage Temperature Range $(T_{\mbox{STG}})$ 40° to $85^{\circ}\mbox{C}$
$\begin{tabular}{ll} Soldering Temperature \\ (2 mm from case bottom) \\ (T_S) t \le 5s240 ^{\circ}C \end{tabular}$
Supply Voltage, (V $_{S})$ 5 to 7 $\mbox{\rm V}$
Power Dissipation (PTOT) TA=25°C250 mW
De-rate Above 25°C1.7 mW/°C

CHARACTERISTICS $(T_A=25^{\circ}C)$

Parameter	Symbol	Min	Тур	Max	Unit
Peak Sensitivity	$\lambda_{ ext{PEAK}}$	_	800	_	nm
Spectral Sensitivity (S=10% of S _{MAX})	Δλ	400		1050	nm
Operating Voltage	V _{CC}	4.75	5	5.25	V
Supply Current	I _{CC}	-	-	40	mA
Light Required to Trigger 1, 2, 3, 4, 5 $(V_{CC}=5 \text{ V}, \lambda=660 \text{ nm})$	Er (+)	-	6.3 -22	-	μW dBm
High Level Output Voltage 1, 2, 5 (I _{OH} = -1 mA)	V _{OH}	3.9	_	4.3	V
Low Level Output Voltage ^{1, 2, 5} (I _{OH} = -0.5 mA)	V _{OL}	2.9	-	3.4	V
Output Rise and Fall Times 1, 2, 5	t _r , t _f	-	-	3	ns
Data Rate 6, 7	f _D	4	-	156	Mbps
Pulse Width Distortion	Δt	-3	-	3	ns
Jitter	Δtj	_	_	3	ns

Notes:

- 1. Input signal at 156 Mbps (Bi-phase signal)
- 2. 3 pF capacitor as load (including parasitic capacitance such as probes, connectors, and PCB patterns)
- 3. Optical input waveform is generated with IF-E99 LED
- 4. Average value, measured using plastic fiber (MH4001 by Mitsubishi Rayon)
- 5. 3 k Ω resistor externally connected to Ω and $\bar{\Omega}$
- 6. Bi-phase signal; NRZ conversion
- No transition with DC light, no light, and modulated light below 4 Mbps

Plastic Fiber Optic 155 Mbps Photologic Detector

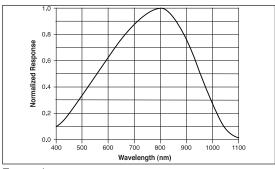


FIGURE 1. Typical detector response versus wavelength.

FIGURE 2. Normalized threshold irradiance vs. amb. temp.

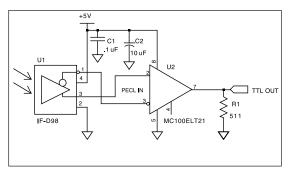
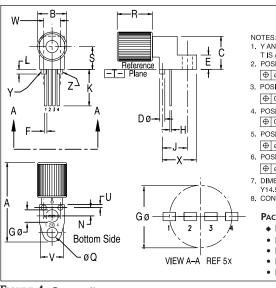



FIGURE 3. Typical interface circuit.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

- 1. Y AND Z ARE DATUM DIMENSIONS AND T IS A DATUM SURFACE.
- 2. POSITIONAL TOLERANCE FOR D Ø (2 PL):
- ⊕ ø 0.25 (0.010)M T YM ZM 3. POSITIONAL TOLERANCE FOR F DIM (2 PL): ⊕ 0.25 (0.010) M T YM ZM
- 4. POSITIONAL TOLERANCE FOR H DIM (2 PL): ⊕ 0.25 (0.010) M T YM ZM
- 5. POSITIONAL TOLERANCE FOR Q ø (2 PL): ⊕ ø 0.25 (0.010)M T YM ZM
- 6. POSITIONAL TOLERANCE FOR B (2 PL): ⊕ ø 0.25 (0.010)(M) T
- 7. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
- 8. CONTROLLING DIMENSION: INCH

PACKAGE IDENTIFICATION:

- ◆ Black housing w/ gold dot
- PIN 1. \(\bar{O}\)
- PIN 2. Ground
- PIN 3. Q
- PIN 4. V_{CC}

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	23.24	25.27	.915	.995	
В	8.64	9.14	.340	.360	
С	9.91	10.41	.390	.410	
D	1.52	1.63	.060	.064	
Е	4.19	4.70	.165	.185	
F	0.35	0.51	.014	.020	
G	3.81 BSC		.150 BSC		
Н	0.18	0.33	.007	.013	
J	7.62 BSC		.300 BSC		
K	2.04	2.84	.080	.112	
L	1.14	1.65	.045	.065	
Ν	2.54 BSC		.100 BSC		
Q	3.05	3.30	.120	.130	
R	10.48	10.99	.413	.433	
S	6.98 BSC		.275 BSC		
U	0.83	1.06	.032	.042	
٧	7.49	7.75	.295	.305	
W	5.08 BSC		.200 BSC		
Χ	10.10	10.68	.397	.427	

FIGURE 4. Case outline.