

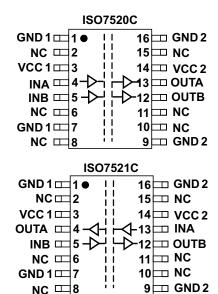
Low-Power 5 KV(rms) Dual Digital Isolators

Check for Samples: ISO7520C, ISO7521C

FEATURES

- Highest Signaling Rate: 1 Mbps
- · Propagation Delay Less Than 20 ns
- Low Power Consumption
- Wide Ambient Temperature: –40°C to 105°C
- · Safety and Regulatory Approvals
 - UL 1577 Approved with 4243 Vrms Rating
 - CSA CA Notice 5A, IEC 60747-5-2, IEC 60601-1, 60950-1, and 61010-1 Approved
- 50 kV/µs Transient Immunity Typical
- Operates From 3.3V or 5V Supply and Logic Levels

APPLICATIONS


- Opto-Coupler Replacement in:
 - Medical Applications for IEC 60601-1 (5 KVrms Rated)
 - Industrial Field-Bus
 - ProfiBus
 - ModBus
 - DeviceNetTM Data Buses
 - Servo Control Interface
 - Motor Control
 - Power Supply
 - Battery Packs

DESCRIPTION

The ISO7520C and ISO7521C provide galvanic isolation of up to 4243 Vrms for 1 minute per UL. These devices are also certified to 5000 Vrms reinforced insulation per end equipment standards IEC 60950-1, 61010-1, and 60601-1. These digital isolators have two isolated channels with unidirectional (ISO7520C) and bi-directional (ISO7521C) channel configurations. Each isolation channel has a logic input and output buffer separated by a silicon oxide (SiO₂) insulation barrier. Used in conjunction with isolated power supplies, these devices prevent noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry.

The devices have TTL input thresholds and require two supply voltages, 3.3V or 5V, or any combination. All inputs are 5-V tolerant when supplied from a 3.3-V supply.

Note: The ISO7520C and ISO7521C are specified for signaling rates up to 1 Mbps. Due to their fast response time, under most cases, these devices will also transmit data with much shorter pulse widths. Designers should add external filtering to remove spurious signals with input pulse duration < 20 ns if desired.

NC = No Internal Connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Table 1. PIN DESCRIPTIONS

	PIN		1/0	DESCRIPTION
NAME	ISO7520C	ISO7521C	1/0	DESCRIPTION
INA	4	13	I	Input, channel A
INB	5	5	I	Input, channel B
GND1	1, 7	1, 7	_	Ground connection for V _{CC1}
GND2	9, 16	9, 16	_	Ground connection for V _{CC2}
OUTA	13	4	0	Output, channel A
OUTB	12	12	0	Output, channel B
V _{CC1}	3	14	_	Power supply, V _{CC1}
V _{CC2}	3	14	-	Power supply, V _{CC2}
NC	2, 6, 8, 10, 11, 15	2, 6, 8, 10, 11, 15	-	No Connect Pin

DEVICE FUNCTION TABLE

INPUT SIDE (VCC)(1)	OUTPUT SIDE (VCC)(1)	INPUT (IN) ⁽¹⁾	OUTPUT (OUT) ⁽¹⁾
		Н	Н
PU	PU	L	L
		Open	Н
PD	PU	X	Н

⁽¹⁾ PU = Powered Up (Vcc ≥ 3.15V); PD = Powered Down (Vcc ≤ 2.4V); X = Irrelevant; H = High Level; L = Low Level

AVAILABLE OPTIONS

PRODUCT	RATED T _A	MARKED AS	ORDERING NUMBER
10075200	40°C to 405°C	ISO7520CDW	ISO7520CDW (rail)
ISO7520C	–40°C to 105°C	15075200000	ISO7520CDWR (reel)
ISO7521C	1000 1- 10500		ISO7521CDW (rail)
13075210	–40°C to 105°C	ISO7521CDW	ISO7521CDWR (reel)

ABSOLUTE MAXIMUM RATINGS(1)

					VALUE	UNIT
V_{CC}	Supply voltage	e ⁽²⁾ , V _{CC1} , V _{CC2}			-0.5 V to 6	V
VI	Voltage at IN,	OUT			-0.5 V to 6	V
Io	Output Curren	t			±15	mA
		Human Body Model	JEDEC Standard 22, Test Method A114- C.01		±4	kV
ESD	Electrostatic discharge	Field-Induced-Charged Device Model	JEDEC Standard 22, Test Method C101	All pins	±1	kV
		Machine Model	ANSI/ESDS5.2-1996		±200	V
T_{J}	Maximum jund	ction temperature			150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values.

THERMAL INFORMATION

		ISO752xC	
	THERMAL METRIC	DW	UNITS
		16 PINS	
θ_{JA}	Junction-to-ambient thermal resistance ⁽¹⁾	79.9	
θ_{JCtop}	Junction-to-case (top) thermal resistance (2)	44.6	
θ_{JB}	Junction-to-board thermal resistance (3)	51.2	90044
Ψлт	Junction-to-top characterization parameter (4)	18.0	°C/W
ΨЈВ	Junction-to-board characterization parameter (5)	42.2	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance (6)	n/a	1
P_D	Device power dissipation, Vcc1 = Vcc2 = 5.25 V, T_J = 150 °C, C_L = 15 pF, Input a 0.5 MHz 50 % duty cycle square wave	42	mW

- (1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).
- The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).
- The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	TYP	MAX	UNIT
V _{CC1} , V _{CC2}	Supply voltage - 3.3V Operation	3.15	3.3	3.45	V
	Supply voltage - 5V Operation	4.75	5	5.25	
I _{OH}	High-level output current	-4			mA
l _{OL}	Low-level output current			4	mA
V _{IH}	High-level output voltage	2		V _{CC}	V
V _{IL}	Low-level output voltage	0		0.8	V
T _A	Ambient Temperature	-40		105	°C
T _J ⁽¹⁾	Junction temperature	-40		136	°C
1/t _{ui}	Signaling rate	0		1	Mbps
t _{ui}	Input pulse duration	1			μs

Product Folder Links: ISO7520C ISO7521C

(1) To maintain the recommended operating conditions for T_J, see the *Thermal Information* table

 V_{CC1} and V_{CC2} at 5 V ± 5%, $T_A = -40$ °C to 105°C

	PARAMETER	-	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V	High level cutout voltage	$I_{OH} = -4 \text{ mA}$; S	See Figure 1	V _{CC} -0.8	4.6		V
V _{OH}	High-level output voltage	$I_{OH} = -20 \mu A;$	See Figure 1	V _{CC} -0.1	5		V
V	Low lovel output valtage	I _{OL} = 4 mA; Se	= 4 mA; See Figure 1 = 20 μA; See Figure 1		0.2	0.4	V
V_{OL}	Low-level output voltage	I _{OL} = 20 μA; Se			0	0.1	V
V _{I(HYS)}	Input threshold voltage hysteresis				400		mV
I _{IH}	High-level input current	IND. at O.V. and	Nx at 0 V or V _{CC}			10	μA
I _{IL}	Low-level input current	linx at 0 v or v					μΑ
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 \	/; See Figure 3	25	50		kV/μs
SUPPL	Y CURRENT (All inputs switching wi	th square wave	clock signal for dynamic ICC m	easurement)			
	ISO7520C						
I _{CC1}	Supply current for V _{CC1}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		0.4	1	mA
I _{CC2}	Supply current for V _{CC2}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		3	6	mA
	ISO7521C						
I _{CC1}	Supply current for V _{CC1}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		2	4	mA
I _{CC2}	Supply current for V _{CC2}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		2	4	mA

SWITCHING CHARACTERISTICS

 V_{CC1} and V_{CC2} at 5 V ± 5%, $T_A = -40^{\circ} C$ to 105°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1		9	14	ns
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}			0.3	3.7	ns
t _{sk(pp)}	Part-to-part skew time				4.9	ns
t _{sk(o)}	Channel-to-channel output skew time				3.6	ns
t _r	Output signal rise time	See Figure 1		1		ns
t _f	Output signal fall time			1		ns
t _{fS}	Fail-safe output delay time from input power loss	See Figure 2		6		μs

⁽¹⁾ Also known as pulse skew.

Submit Documentation Feedback

Copyright © 2010–2013, Texas Instruments Incorporated

 V_{CC1} at 5 V ± 5%, V_{CC2} at 3.3 V ± 5%, $T_A = -40$ °C to 105°C

	PARAMETER	Т	EST CONDITIONS	MIN	TYP	MAX	UNIT
		$I_{OH} = -4 \text{ mA};$	ISO7521C (5-V side)	V _{CC} -0.8	4.6		
V_{OH}	High-level output voltage	See Figure 1	ISO7520C/7521C(3.3-V side)	V _{CC} -0.4	3		V
		$I_{OH} = -20 \mu A; S$	See Figure 1	V _{CC} -0.1	V _{CC}		
	Law law law and a street walter and	I _{OL} = 4 mA; See	e Figure 1		0.2	0.4	
V_{OL}	Low-level output voltage	I _{OL} = 20 μA; Se	e Figure 1		0	0.1	V
V _{I(HYS)}	Input threshold voltage hysteresis				400		mV
I _{IH}	High-level input current	INIV at 0 1/ ar 1/	INx at 0 V or V _{CC}			10	μA
I _{IL}	Low-level input current	INX at 0 V Of V ₀					μΑ
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 V	; See Figure 3	25	40		kV/μs
SUPPL	Y CURRENT (All inputs switching w	ith square wave	clock signal for dynamic ICC	measurement)		
	ISO7520C						
I _{CC1}	Supply current for V _{CC1}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		0.4	1	mA
I _{CC2}	Supply current for V _{CC2}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		2	4.5	mA
	ISO7521C		•				
I _{CC1}	Supply current for V _{CC1}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		2	4	mA
I _{CC2}	Supply current for V _{CC2}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		1.5	3.5	mA

SWITCHING CHARACTERISTICS

 V_{CC1} at 5 V ± 5%, V_{CC2} at 3.3 V ± 5%, $T_A = -40$ °C to 105°C

001	111, 602	-				
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1		10	17	ns
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}			0.5	5.6	ns
t _{sk(pp)}	Part-to-part skew time				6.3	ns
t _{sk(o)}	Channel-to-channel output skew time				4	ns
t _r	Output signal rise time	See Figure 1		2		ns
t _f	Output signal fall time			2		ns
t _{fS}	Fail-safe output delay time from input power loss	See Figure 2		6		μs

⁽¹⁾ Also known as pulse skew.

Copyright © 2010–2013, Texas Instruments Incorporated

Product Folder Links: ISO7520C ISO7521C

 V_{CC1} at 3.3 V ± 5%, V_{CC2} at 5 V ± 5%, $T_A = -40^{\circ}C$ to 105°C

	PARAMETER	Т	EST CONDITIONS	MIN	TYP	MAX	UNIT
		$I_{OH} = -4 \text{ mA};$	ISO7520C/7521C (5-V side)	V _{CC} -0.8	4.6		
V_{OH}	High-level output voltage	See Figure 1	ISO7521C (3.3-V side)	V _{CC} -0.4	3		V
		$I_{OH} = -20 \mu A; S$	See Figure 1	V _{CC} -0.1	V _{CC}		
	Lave lavel autout valtage	I _{OL} = 4 mA; See	= 4 mA; See Figure 1		0.2	0.4	V
V_{OL}	Low-level output voltage	$I_{OL} = 20 \mu A$; Se	e Figure 1		0	0.1	V
V _{I(HYS)}	Input threshold voltage hysteresis				400		mV
I _{IH}	High-level input current	IN+ 0 \/ - = \/	INx at 0 V or V _{CC}			10	μΑ
I _{IL}	Low-level input current	INX at 0 v or v					μΑ
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 V	; See Figure 3	25	40		kV/μs
SUPPL	Y CURRENT (All inputs switching wi	ith square wave	clock signal for dynamic ICC n	neasurement)			
	ISO7520C						
I _{CC1}	Supply current for V _{CC1}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		0.2	0.7	mA
I _{CC2}	Supply current for V _{CC2}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		3	6	mA
	ISO7521C						
I _{CC1}	Supply current for V _{CC1}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		1.5	3.5	mA
I _{CC2}	Supply current for V _{CC2}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		2	4	mA

SWITCHING CHARACTERISTICS

 V_{CC1} at 3.3 V ± 5%, V_{CC2} at 5 V ± 5%, $T_A = -40$ °C to 105°C

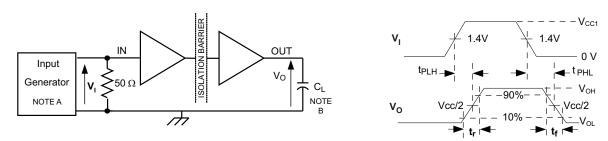
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1		10	17	ns
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}			0.5	4	ns
t _{sk(pp)}	Part-to-part skew time				8.5	ns
t _{sk(o)}	Channel-to-channel output skew time				4	ns
t _r	Output signal rise time	See Figure 1		2		ns
t _f	Output signal fall time			2		ns
t _{fS}	Fail-safe output delay time from input power loss	See Figure 2		6		μs

(1) Also known as pulse skew.

 V_{CC1} and V_{CC2} at 3.3 V ± 5%, $T_A = -40$ °C to 105°C

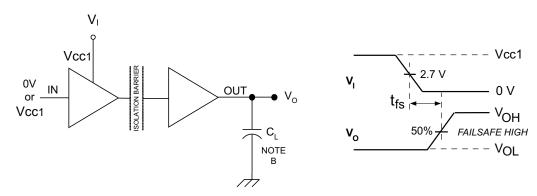
	PARAMETER	-	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V	High-level output voltage	$I_{OH} = -4 \text{ mA}$; S	V _{CC} -0.4	3		V	
V _{OH}		$I_{OH} = -20 \mu A;$	See Figure 1	V _{CC} -0.1	3.3		V
V_{OL}	Low lovel output voltage	I _{OL} = 4 mA; Se	e Figure 1		0.2	0.4	V
	Low-level output voltage	I _{OL} = 20 μA; Se	ee Figure 1		0 (0.1	
V _{I(HYS)}	Input threshold voltage hysteresis				400		mV
I _{IH}	High-level input current	INIV at 0 V ar V					μΑ
I_{IL}	Low-level input current	INx at 0 V or V	CC	-10			μΑ
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 \	/; See Figure 3	25	40		kV/μs
SUPPL	Y CURRENT (All inputs switching wi	th square wave	clock signal for dynamic ICC m	easurement)			
	ISO7520C						
I _{CC1}	Supply current for V _{CC1}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		0.2	0.7	mA
I _{CC2}	Supply current for V _{CC2}	DC to 1 Mbps	OC to 1 Mbps $V_I = V_{CC}$ or 0 V, 15 pF load		2	4.5	mA
	ISO7521C						
I _{CC1}	Supply current for V _{CC1}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		1.5	3.5	mA
I _{CC2}	Supply current for V _{CC2}	DC to 1 Mbps	V _I = V _{CC} or 0 V, 15 pF load		1.5	3.5	mA

SWITCHING CHARACTERISTICS


 V_{CC1} and V_{CC2} at 3.3 V ± 5%, $T_A = -40$ °C to 105°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1		12	20	ns
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}			1	5	ns
t _{sk(pp)}	Part-to-part skew time				6.8	ns
t _{sk(o)}	Channel-to-channel output skew time				5.5	ns
t _r	Output signal rise time	See Figure 1		2		ns
t _f	Output signal fall time			2		ns
t _{fS}	Fail-safe output delay time from input power loss	See Figure 2		6		μs

(1) Also known as pulse skew.



PARAMETER MEASUREMENT INFORMATION

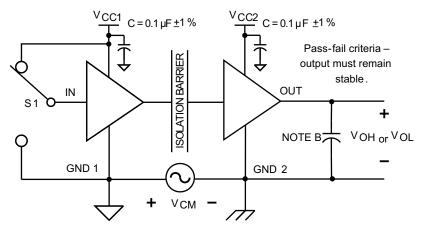

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq$ 3ns, $t_f \leq$ 3ns, $Z_O = 50\Omega$.
- B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms

A. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 2. Failsafe Delay Time Test Circuit and Voltage Waveforms

A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 3. Common-Mode Transient Immunity Test Circuit

DEVICE INFORMATION

PACKAGE CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(I01)	Minimum air gap (Clearance)	Shortest terminal to terminal distance through air	8.34			mm
L(102)	Minimum external tracking (Creepage)	Shortest terminal to terminal distance across the package surface	8.1			mm
СТІ	Tracking resistance (Comparative Tracking Index)	DIN IEC 60112 / VDE 0303 Part 1	≥400			V
	Minimum internal gap (Internal Clearance)	Distance through the insulation	0.014			mm
R _{IO}	Isolation resistance, input to output ⁽¹⁾	Input to output, $V_{\rm IO}$ = 500 V, all pins on each side of the barrier tied together creating a two-terminal device		>10 ¹²		Ω
C _{IO}	Barrier capacitance input to output ⁽¹⁾	$V_{IO} = 0.4 \sin(2\pi ft), f = 1 \text{ MHz}$		2		pF
Cī	Input capacitance to ground (2)	$V_1 = Vcc/2 + 0.4 \sin(2\pi ft), f = 1 MHz, Vcc = 5 V$		2		pF

⁽¹⁾ All pins on each side of the barrier tied together creating a two-terminal device.

NOTE

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed circuit board do not reduce this distance

Creepage and clearance on a printed circuit board become equal according to the measurement techniques shown in the Isolation Glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

IEC 60664-1 RATINGS TABLE

TEST CONDITIONS	SPECIFICATION
Material Group	II
Rated mains voltages <= 150 Vrms	I - IV
Rated mains voltages <= 300 Vrms	I - IV
Rated mains voltages <= 600 Vrms	1 - 111
Rated mains voltages <= 1000 Vrms	1 - 11
	Material Group Rated mains voltages <= 150 Vrms Rated mains voltages <= 300 Vrms Rated mains voltages <= 600 Vrms

Product Folder Links: ISO7520C ISO7521C

⁽²⁾ Measured from input pin to ground.

INSULATION CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	SPECIFICATION	UNIT	
V _{IORM}	Maximum working insulation voltage	rking insulation voltage			
		Method a, After environmental tests subgroup 1, $V_{PR} = V_{IORM} \times 1.6$, $t = 10 \text{ s}$, Partial discharge < 5 pC	2262		
V _{PR}	Input to output test voltage	Method b1, $V_{PR} = V_{IORM} \times 1.875$, t = 1 s (100% Production test) Partial discharge < 5 pC	2651	Vpeak	
		After Input/Output Safety Test Subgroup 2/3, $V_{PR} = V_{IORM} \times 1.2$, $t = 10 \text{ s}$, Partial discharge < 5 pC	1697		
V_{IOTM}	Transient overvoltage	t = 60 sec (qualification)	6000	Vpeak	
.,	la detian valtana nan III. 4577	V _{TEST} = V _{ISO} , t = 60 sec (qualification)	4243	\/	
V _{ISO}	Isolation voltage per UL 1577	V _{TEST} = 1.2 × V _{ISO} , t = 1 sec (100% production)	5092	Vrms	
R _S	Insulation resistance	V _{TEST} = 500 V at T _S = 150°C	>109	Ω	
	Pollution degree		2		

REGULATORY INFORMATION

VDE	TUV	CSA	UL
Certified according to IEC 60747-5-2	Certified according to EN/UL/CSA 60950-1 & 61010-1	Approved under CSA Component Acceptance Notice	Recognized under 1577 Component Recognition Program
Basic Insulation Maximum Transient Overvoltage, 6000 V _{PK} Maximum Working Voltage, 1414 V _{PK}	5000 V _{RMS} Reinforced Insulation, 400 V _{RMS} maximum working voltage 5000 V _{RMS} Basic Insulation, 600 V _{RMS} maximum working voltage	5000 V _{RMS} Reinforced insulation, 2 Means of Patient Protection at 125 V _{RMS} per IEC 60601-1 (3rd Ed.)	Single Protection, 4243 V _{RMS} Isolation Voltage
File Number: 40016131	Certificate Number: U8V 1309 77311 010	File Number: 220991	File Number: E181974

IEC SAFETY LIMITING VALUES

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the IO can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.

	PARAMETER	ETER TEST CONDITIONS				UNIT
Is	Safety input, output, or supply current	θ_{JA} =79.9°C/W, V _I = 5.25 V, T _J = 150°C, T _A = 25°C		298		Λ
	Salety Input, output, or supply current	θ_{JA} =79.9°C/W, V _I = 3.45 V, T _J = 150°C, T _A = 25°C			453	mA
Ts	Maximum Case Temperature				150	°C

The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Characteristics table is that of a device installed on a High-K Test Board for Leaded Surface Mount Packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

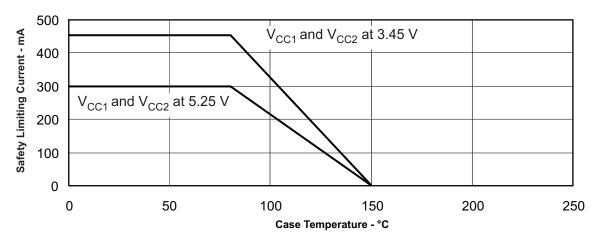


Figure 4. DW-16 Theta-JC Thermal Derating Curve per IEC 60747-5-2

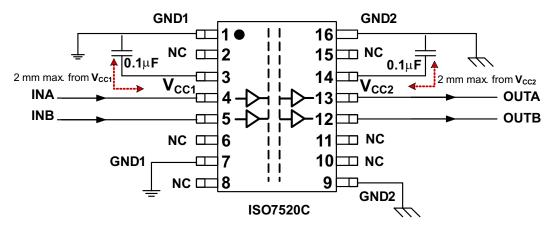


Figure 5. Typical ISO7520C Application Circuit

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

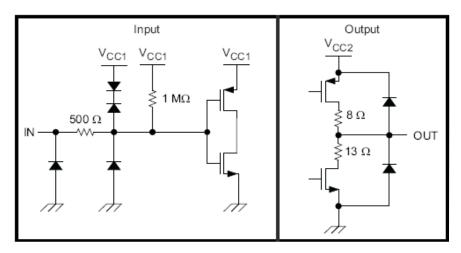
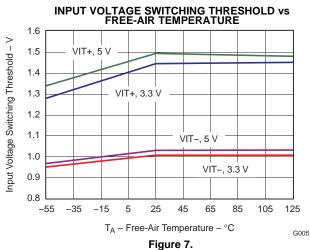
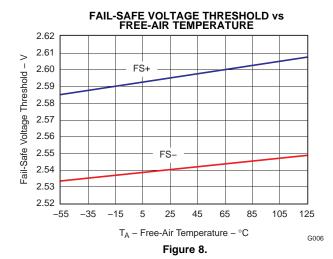
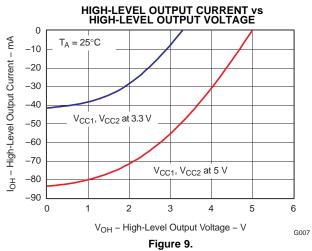
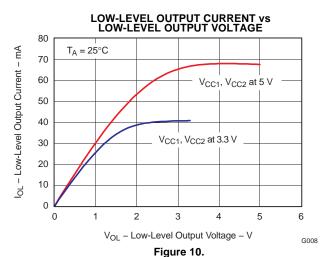




Figure 6. I/O Schematic




TYPICAL CHARACTERISTICS

REVISION HISTORY

Cł	nanges from Original (June 2010) to Revision A	Page
•	Added PIN DESCRIPTION table	2
•	Changed t _{fs} units in Switching Characteristics Table	4
•	Changed t _{fs} units in Switching Characteristics Table	
•	Changed t _{fs} units in Switching Characteristics Table	6
•	Changed t _{fs} units in Switching Characteristics Table	
•	Changed Minimum internal gap limit from 0.016 to 0.014 mm.	9
•	Deleted V _{IORM} test conditions from INSULATION CHARACTERSISTCS table	10
•	Added V _{PR} parameter and Specifications in INSULATION CHARACTERSISTCS table	
•	Changed V _{IOTM} row of the INSULATION CHARACTERISTICS tables	10
•	Changed V _{ISO} Specifications in INSULATION CHARACTERISTICS table	10
Cł	nanges from Revision A (September 2010) to Revision B	Page
•	Changed 5th Features subbullets	1
•	Changed the first SWITCHING CHAR table, MAX value, 2nd row from 3.5 to 3.7 and third row from 4 to 4.9	
•	Changed the second SWITCHING CHAR table, MAX value, 2nd row from 4 to 5.6 and third row from 5 to 6.3	5
•	Changed the third SWITCHING CHAR table, MAX value, 3rd row from 5 to 8.5	
•	Changed the fourth SWITCHING CHAR table, MAX value, 3rd row from 6 to 6.8	
•	Changed REGULATORY INFORMATION table , from: File Number: pending, to: File Number: E181974	
Cł	nanges from Revision B (June 2011) to Revision C	Page
•	Changed all the devices numbers by adding a 'C' to the end	1
•	Changed the Safety and Regulatory Approvals Feature	
•	Changed the Description section	1
•	Changed the IEC 60664-1 Ratings Table	9
•	Changed the INSULATION CHARACTERISTICS table	
Cł	nanges from Revision C (November 2011) to Revision D	Page
•	Deleted Note 1 from the INSULATION CHARACTERISTICS table	10
•	Changed the REGULATORY INFORMATION table, TUV column From: Certificate Number: U8V 11 08 77311 006 To: Certificate Number: U8V 1309 77311 010	

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
ISO7520CDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 105	ISO7520CDW	Samples
ISO7520CDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 105	ISO7520CDW	Samples
ISO7521CDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 105	ISO7521CDW	Samples
ISO7521CDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 105	ISO7521CDW	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

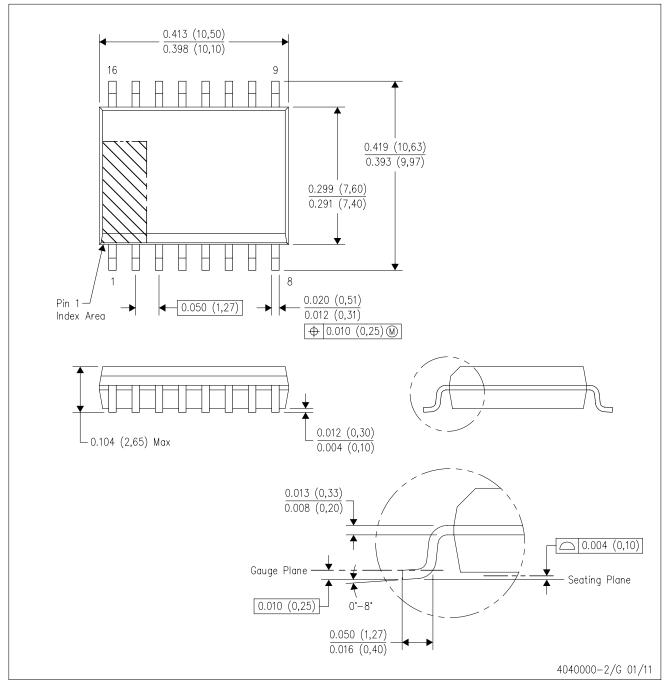
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

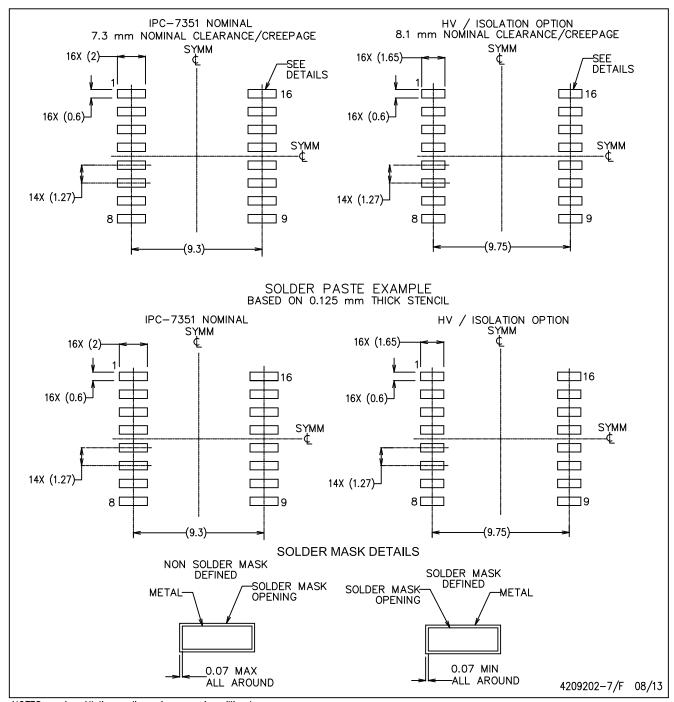
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



11-Apr-2013

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- E. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- F. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>