NiCd/NiMH Fast-Charge Management ICs

Features

General Description

 Fast charge of nickel cadmium or nickel-metal hydride batteries

- Direct LED output displays charge status
- ► Fast-charge termination by -∆V, maximum voltage, maximum temperature, and maximum time
- Internal band-gap voltage reference
- Optional top-off charge
- Selectable pulse trickle charge rates
- Low-power mode
- 8-pin 300-mil DIP or 150-mil SOIC

Pin Connections

The bq2002E and bq2002G Fast-Charge ICs are low-cost CMOS battery-charge controllers providing reliable charge termination for both NiCd and NiMH battery applications. Controlling a current-limited or constant-current supply allows the bq2002E/G to be the basis for a costeffective stand-alone or system-integrated charger. The bq2002E/G integrates fast charge with optional top-off and pulsed- trickle control in a single IC for charging one or more NiCd or NiMH battery cells.

Fast charge is initiated on application of the charging supply or battery replacement. For safety, fast charge is inhibited if the battery temperature and voltage are outside configured limits. Fast charge is terminated by any of the following:

- Peak voltage detection (PVD)
- Negative delta voltage $(-\Delta V)$
- Maximum voltage
- Maximum temperature
- Maximum time

After fast charge, the bq2002E/G optionally tops-off and pulse-trickles the battery per the pre-configured limits. Fast charge may be inhibited using the INH pin. The bq2002E/G may also be placed in low-standby-power mode to reduce system power consumption.

The bq2002E differs from the bq2002G only in that a slightly different set of fast-charge and top-off time limits is available. All differences between the two ICs are illustrated in Table 1.

Pin Names

 TM
 Timer mode select input

 LED
 Charging status output

 BAT
 Battery voltage input

 V_{SS}
 System ground

TS	Temperature sense input
V _{CC}	Supply voltage input
INH	Charge inhibit input
CC	Charge control output

bq2002E/G Selection Guide

Part No.	LBAT	тсо	HTF	LTF	-∆V	PVD	Fast Charge	tмто	Top-Off	Maintenance
bq2002E	0.175 *	0.5 *	0.6 *	None		~	C/2	200	None	C/32
	VCC	V _{CC}	V _{CC}			~	1C	80	C/16	C/32
					~		2C	40	None	C/32
bq2002G	0.175 *	0.5 *	0.6 *	None		~	C/2	160	None	C/32
	VCC	V _{CC}	V _{CC}			~	1C	80	C/16	C/32
					~		2C	40	None	C/32

SLUS132 - FEBRUARY 1999

Pin Descriptions

TM Timer mode input

A three-level input that controls the settings for the fast charge safety timer, voltage termination mode, top-off, pulse-trickle, and voltage hold-off time.

LED Charging output status

Open-drain output that indicates the charging status.

BAT Battery input voltage

The battery voltage sense input. The input to this pin is created by a high-impedance resistor divider network connected between the positive and negative terminals of the battery.

V_{SS} System ground

TS Temperature sense input

Input for an external battery temperature monitoring thermistor.

V_{CC} Supply voltage input

 $5.0V \pm 20\%$ power input.

INH Charge inhibit input

When high, INH suspends the fast charge in progress. When returned low, the IC re-

sumes operation at the point where initially suspended.

CC Charge control output

An open-drain output used to control the charging current to the battery. CC switching to high impedance (Z) enables charging current to flow, and low to inhibit charging current. CC is modulated to provide top-off, if enabled, and pulse trickle.

Functional Description

Figure 2 shows a state diagram and Figure 3 shows a block diagram of the bq2002E/G.

Battery Voltage and Temperature Measurements

Battery voltage and temperature are monitored for maximum allow

Figure 2. State Diagram

Figure 3. Block Diagram

Figure 4. Charge Cycle Phases

A ground-referenced negative temperature coefficient thermistor placed near the battery may be used as a low-cost temperature-to-voltage transducer. The temperature sense voltage input at TS is developed using a resistor-thermistor network between V_{CC} and $V_{SS}.$ See Figure 1.

1. Application of power to $V_{CC}\, or$

2. Voltage at the BAT pin falling through the maximum cell voltage $V_{MCV} \mbox{ where }$

 $V_{MCV} = 2V \pm 5\%$.

Starting A Charge Cycle

Either of two events starts a charge cycle (see Figure 4):

If the battery is within the configured temperature and voltage limits, the IC begins fast charge. The valid battery voltage range is $V_{LBAT} < V_{BAT} < V_{MCV}$, where

Corre- sponding			Typica Charg Top Time (min	al Fast- je and -Off Limits utes)	Typical PVD and -∆V	Top Off	Pulse-	Pulse- Trickle	Maximum Synchro- nized Sampling
Rate	тм	Termination	bq2002E	bq2002G	(seconds)	Rate	Rate	(ms)	(seconds)
C/2	Mid	PVD	200	160	300	Disabled	C/32	73	18.7
1C	Low	PVD	80	80	150	C/16	C/32	37	18.7
2C	High	-ΔV	40	40	75	Disabled	C/32	18	9.4

Table 1. Fast-Charge Safety Time/Hold-Off/Top-Off Table

Notes: Typical conditions = 25° C, V_{CC} = 5.0V Mid = $0.5 * V_{CC} \pm 0.5$ V Tolerance on all timing is $\pm 12\%$.

$V_{LBAT} = 0.175 * V_{CC} \pm 20\%$

The valid temperature range is $V_{TS} > V_{HTF}$ where

 $V_{HTF} = 0.6 * V_{CC} \pm 5\%$.

If the battery voltage or temperature is outside of these limits, the IC pulse-trickle charges until the next new charge cycle begins.

If $V_{MCV} < V_{BAT} < V_{PD}$ (see "Low-Power Mode") when a new battery is inserted, a delay of 0.35 to 0.9s is imposed before the new charge cycle begins.

Fast charge continues until termination by one or more of the five possible termination conditions:

- Peak voltage detection (PVD)
- Negative delta voltage (-∆V)
- Maximum voltage
- Maximum temperature
- Maximum time

PVD and -\DeltaV Termination

There are two modes for voltage termination, depending on the state of TM. For $-\Delta V$ (TM = high), if V_{BAT} is lower than any previously measured value by 12mV ±3mV, fast charge is terminated. For PVD (TM = low or mid), a decrease of 2.5mV ±2.5mV terminates fast charge. The PVD and $-\Delta V$ tests are valid in the range $1V < V_{BAT} < 2V$.

Synchronized Voltage Sampling

Voltage sampling at the BAT pin for PVD and - ΔV termination may be synchronized to an external stimulus using the INH input. Low-high-low input pulses between 100ns and 3.5ms in width must be applied at the INH pin with a frequency greater than the "maximum synchronized sampling period" set by the state of the TM pin as shown in Table 1. Voltage is sampled on the falling edge of such pulses.

If the time between pulses is greater than the synchronizing period, voltage sampling "free-runs" at once every 17 seconds. A sample is taken by averaging together voltage measurements taken 57 μ s apart. The IC takes 32 measurements in PVD mode and 16 measurements in - Δ V mode. The resulting sample periods (9.17 and 18.18ms, respectively.4(n)-327.5(a)-28.3(s)-345.5(sha)-28.3D 0.038r T rate, and voltage hold-off period options. Table 1 describes the states selected by the TM pin. The midlevel selection input is developed by a resistor divider between V_{CC} and ground that fixes the voltage on TM at V_{CC}/2 \pm 0.5V. See Figure 4.

Charge Status Indication

A fast charge in progress is uniquely indicated when the $\overline{\text{LED}}$ pin goes low. The $\overline{\text{LED}}$ pin is driven to the high-Z state for all conditions other

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
V _{CC}	V _{CC} relative to V _{SS}	-0.3	+7.0	v	
VT	DC voltage applied on any pin excluding V_{CC} relative to V_{SS}	-0.3	+7.0	V	
T _{OPR}	Operating ambient temperature	0	+70	°C	Commercial
T _{STG}	Storage temperature	-40	+85	°C	
T _{SOLDER}	Soldering temperature	-	+260	°C	10 sec max.
T _{BIAS}	Temperature under bias	-40	+85	°C	

Note: Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

DC Thresholds (TA = 0 to 70°C; V_{CC} \pm 20%)

Symbol	Parameter	Rating	Tolerance	Unit	Notes
V _{TCO}	Temperature cutoff	0.5 * V _{CC}	±5%	V	$V_{TS} \leq V_{TCO}$ inhibits/terminates fast charge and top-off

V_{HTFVO} P R

Symbol	Condition	Minimum	Typical	Maximum	Unit	Notes
V _{CC}	Supply voltage	4.0	5.0	6.0	v	
V _{DET}	-ΔV, PVD detect voltage	1	-	2	v	
VBAT	Battery input	0	-	V _{CC}	v	
V _{TS}	Thermistor input	0.5	-	V _{CC}	v	$V_{TS} < 0.5 V$ prohibited
VIH	Logic input high	0.5	-	-	v	INH
	Logic input high	V _{CC} - 0.5	-	-	v	ТМ
VIM	Logic input mid	$\frac{V_{CC}}{2} - 0.5$	-	$\frac{\mathrm{V}_{\mathrm{CC}}}{2} + 0.5$	v	ТМ
VIL	Logic input low	-	-	0.1	v	INH
	Logic input low	-	-	0.5	v	ТМ
VOL	Logic output low	-	-	0.8	v	$\overline{\text{LED}}$, CC, $I_{OL} = 10\text{mA}$
V _{PD}	Power down	V _{CC} - 1.5	-	V _{CC} - 0.5	v	$V_{BAT} \ge V_{PD}$ max. powers down bq2002E/G; $V_{BAT} < V_{PD}$ min. = normal operation.
I _{CC}	Supply current	-	-	500	μΑ	Outputs unloaded, $V_{CC} = 5.1V$
I _{SB}	Standby current	-	-	1	μΑ	$V_{CC} = 5.1 \text{V}, V_{BAT} = V_{PD}$
IOL	LED, CC sink	10	-	-	mA	$@V_{OL} = V_{SS} + 0.8V$
IL	Input leakage	-	-	±1	μΑ	INH, CC, $V = V_{SS}$ to V_{CC}
I _{OZ}	Output leakage in high-Z state	-5	-	-	μΑ	IED, CC

Recommended DC Operating Conditions (T_A = 0 to 70°C)

Note: All voltages relative to V_{SS}.

Impedance

Symbol	Parameter	Minimum	Typical	Maximum	Unit
R _{BAT}	Battery input impedance	50	-	-	ΜΩ
R _{TS}	TS input impedance	50	-	-	MΩ

Timing (T_A = 0 to +70°C; V_{CC} ±10%)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
d _{FCV}	Time base variation	-12	-	12	%	
t _{DLY}	Start-up delay	0.35	-	0.9	s	Starting from $V_{MCV} < V_{BAT} < V_{PD}$

Note: Typical is at $T_A = 25^{\circ}C$, $V_{CC} = 5.0V$.

8-Pin DIP (PN)

	Inc	hes	Millim	neters
Dimension	Min.	Max.	Min.	Max.
А	0.160	0.180	4.06	4.57
A1	0.015	0.040	0.38	1.02
В	0.015	0.022	0.38	0.56
B1	0.055	0.065	1.40	1.65
С	0.008	0.013	0.20	0.33
D	0.350	0.380	8.89	9.65
Е	0.300	0.325	7.62	8.26
E1	0.230	0.280	5.84	7.11
е	0.300	0.370	7.62	9.40
G	0.090	0.110	2.29	2.79
L	0.115	0.150	2.92	3.81
S	0.020	0.040	0.51	1.02

8-Pin PN (0.300" DIP)

8-Pi	n SOIC Na	rrow (SN	I)8-Pin S	SN(0.150"	SOIC)Dime	ensionInd	ches	Milli	. M	
С	0.007	0.010	0.18	0.25D	0.185	0.200	4.70	5.08E	0.150	0.160
_		E	B —							

А

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
BQ2002EPN	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
BQ2002EPNE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
BQ2002ESN	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
BQ2002ESNG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
BQ2002ESNTR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
BQ2002ESNTRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
BQ2002GPN	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
BQ2002GPNE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
BQ2002GSN	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
BQ2002GSNG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
BQ2002GSNTR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
BQ2002GSNTRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:
 ACTIVE: Product device recommended for new designs.
 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy pse-follows-278.0 (&)] Tfollows-278.0 (&)] Tfoll686 1 68.r1] Tfoll68value

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

WWW.ti.com

19-Mar-2008

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ2002ESNTR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
BQ2002GSNTR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

19-Mar-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ2002ESNTR	SOIC	D	8	2500	340.5	338.1	20.6
BQ2002GSNTR	SOIC	D	8	2500	340.5	338.1	20.6

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or rupre ent tha any TI patent right, copyright, mask work right, ante y righ d-part in whi or other TI intellectual prope elating hy con TI products or services are used. Information published by TI regarding th to use such products or services or a products party under the patents or other intellectual warranty or endorsement th eof. l of s rma rea cens a thirg property of the third party, d of 1 a licen its or tual

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or 43.7i1s,