

b.-2050H

FncinalDeciin GenealOeain

b-2050H

V lage The h ld TMP (he) Tem e a e Range 2050 < -30 C . . 0, ς Β. , · 7 N. --30 C ____ -20 C , . **.** 1, B11-1 4 B2 -20 C ____-10 C 2, B134B2 , • Y '. ī 7 ЕÞ 7 ÊD م . ا بر الد -Y . 050 ED7 2 7) = 0.76 ₽₽ (. ED 1-0.025 ED b.735 , ED .₹ Β,. -, Y . .7 . T. . , ______B_____ . Ý в, 7 7 D 2050 **,** ٦. . . ED --, Y DET. = 1) 2C. ! , -2Ć 7 1/2. -•. \sim **RBI** In C n ide a i n La. 2050 , **.** cc . 7 20 7 F 3.0 С CC¢C. . C , **Y** . • . , 7 Υ. . T -1+ . 'A 1-1-Re e C2) (C1 Y <u>.</u> ₿ Υ. CC] . . . _ CC Y ۰., Å -,= 1.1 ۰, А 7 . 'n .0.1µF . CC. FC 🦉 , ۰. 0 (=). <u>,,,</u>,,, Y . . ۰. i, Y • Tem e - 1 Υ. ()2050 -Í 10 C -35 85 Ċ. 7 Ý. Ţ 7 10 C Ţ • . : 4

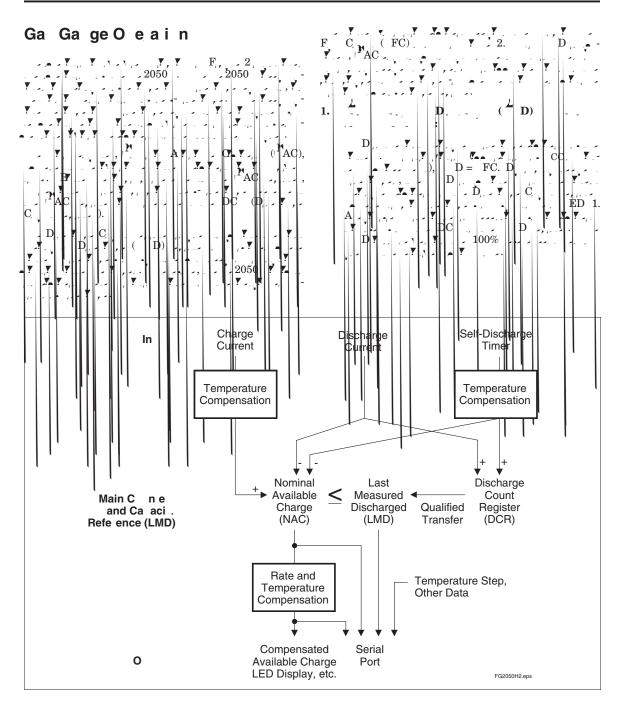
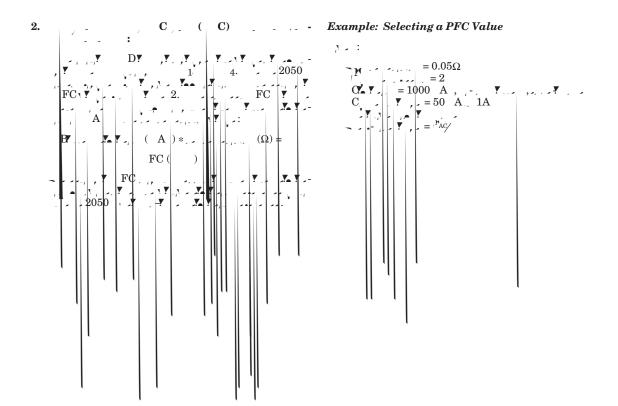
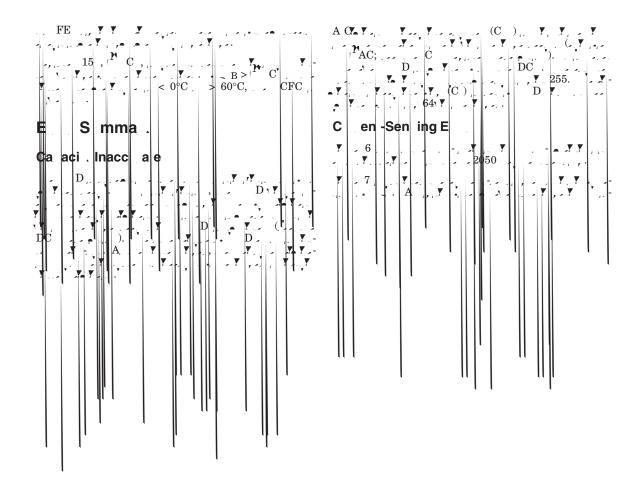
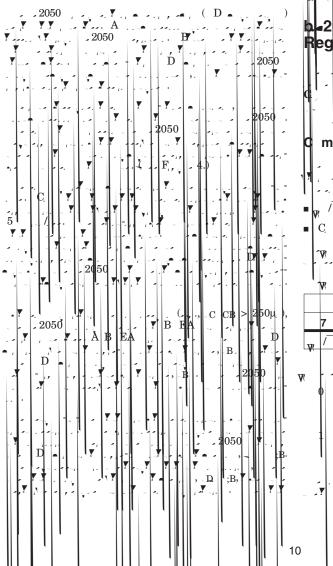
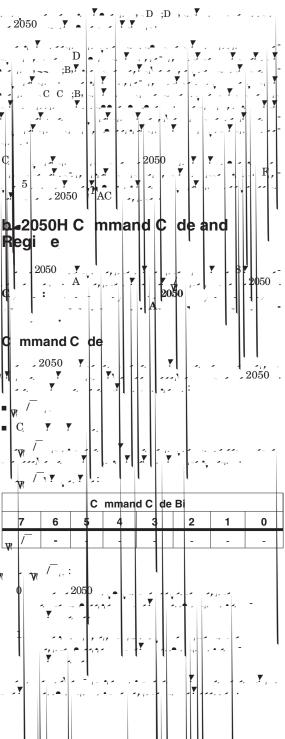




Fig e 2. O e a i nal O e lie




b_2050H

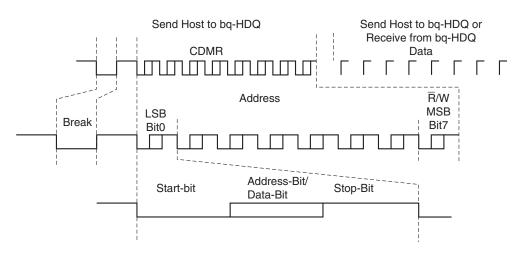

Vos											
(μV)	20	20 50 100									
50	0.25	0.10	0.05	%							
100	0.50	0.20	0.10	%							
150	0.75	0.30	0.15	%							
180	0.90	0.36	0.18	%							

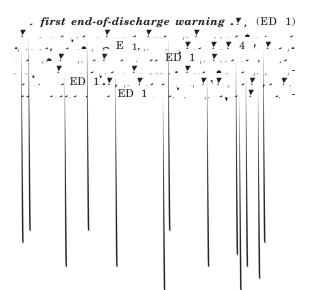
Table 7. V_{OS} -Rela ed C en Sen e E (C en = 1A)

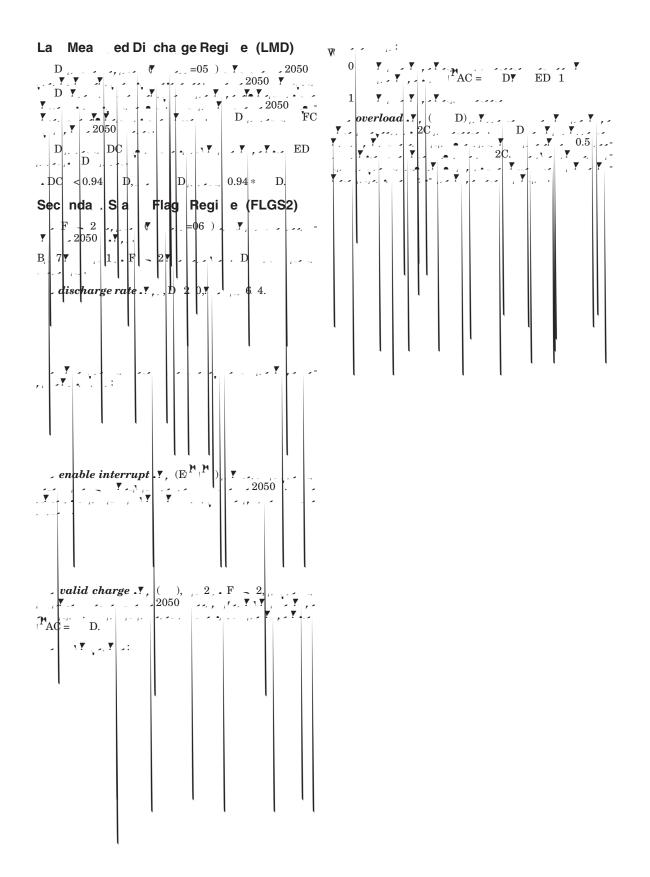
C mm nica ing Wi h he b-2050H

TD201807.eps

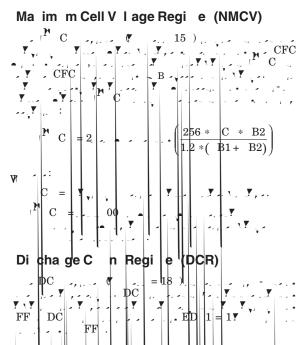
b.**₄**2050H

		L c.	Read/	Cn	l Field						
S.mb I	Regi e Name	(he)	Wie	7(MSB)	6	5	4	3	2	1	0(LSB)
F _ 1	Y . Y Y	01		С _	В	- A	С	D	1	ED 1	ED F
	· · · · · · · · · · · · · · · · · · ·	02		3	2	1	0	3	2	1	0
"AC		03	*	AC 7	AC 6	AC 5	AC 4	PAC 3	AC 2	AC 1	AC 0
MAC	Y Y Y	17	*	AC 7	AC 6	AC 5	AC 4	AC 3	AC 2	AC 1	AC 0
BA D	By	04	*	BA D7	BA D6	BA D5	BA D4	BA D3	BA D2	BA D1	BA D0
D		05	*	D7	D6	D5	D4	D3	D2	D1	D0
F _ 2]	· · · · · · · · · · · · · · · · · · ·	06		- D	D 2	D 1	D 0	E' ^P ' ^P		- D	D
D		07		- D	- D	- D	D5	D4	D3	D2	D1
		08		- D	- D	- D	5	4	3	2	1
С		09	*	C 7	C 6	C 5	C 4	C 3	C 2	C 1	C 0
¬ В	B [*]	0		- B7	- B6	- B5	- B4	- B3	- B2	– B1	- B0
-		0,	*	- 7	- 6	- 5	- 4	- 3	- 2	- 1	- 0
CAC		0	*	CAC 7	CAC 6	CAC 5	CAC 4	CAC 3	CAC 2	CAC 1	CAC 0
CACD		0.	*	CACD7	CACD6	CACD5	CACD4	CACD3	CACD2	CACD1	CACD0
AE		0.	-	AE 7-	AE 6-	AE 5-	AE 4	AE 3-	AE 2-	AE 1	AE 0
AE	X - XY Y ,	10		AE 7	- AE 6	AE 5-	AE 4	AE 3-	AE 2-	AE 1	- AE 0
CAC	CAC	11		-	CAC6	CAC5	CAC4	CAC3	CAC2	CAC1	CAC0
-	c,	12		- 7	- 6	- 5		- 3			- 0
P C		13		<u>7</u>	F C 6	P C 5	$\vec{\mathbf{r}} = \frac{4}{\mathbf{r}}$	$\vec{\mathbf{r}} = \frac{3}{100}$	$\vec{\mathbf{P}} = \frac{2}{\vec{\mathbf{P}}}$	$\frac{1}{P}$	
0		15	v	- C 7	00	0.0	0 1	0.0			
DC		18	Ŵ,	DC 7	DC 6	DC 5	DC 4	DC 3	DC 2	DC 1	DC 0
FC		1. 38	Ŵ.	- D	- D	- D	- D	→ D DC	- D	<u> </u>	C D
	<mark>┤╡╢╞╱╢╤╸┈┤╢┤</mark>	39	/		_ D 0	- D 0	_ D 0	0	_ D 0	_ D 0	0
E/ FF	C	3.	Ŵ	1	1	1	1	1	1	1	1
.:			W.	*	-			· ·		*	


Table 8. b. 2050H C mmand and S a Regi e


. . .

12


b₄2050H

		(c mma	nd C d	e Bi				Αv		.:				
7	6	5	4	3	2	1	0				FLGS	Bi			
	AD6	AD5	AD4	AD3	AD2	AD1	AD0	7	6	5	4	3	2	1	0
		_		_			(_ B)	_	-	<u> </u>	-	-	-	-	-
Di	ma . S	2	Elag	Pogi	o (F		n l	· · W	- A	,.:					
			_	_	-		-		- A	· , • ,	(- A	< 0.5)	
Ţ	F _ 1 2050) .Y,		··· =	<i>،</i> (10			1	- A	· , • ,	1- 11	(_ A	> 2.5)	
-	charge	e stat								y inaco Y	urate .` ▼),,. Y.,		•
л Ү л Ү	, Y , .	1 :	> _	. A _	د, ♥ C	Y				· · · ·	D	Y		Y	C
1-	· Y , . Y .		C	2				í T	Y	• • • •	- 64 - 2050	- Y , -		· · · · · ·	D
	C _ 1	(₁ Y	-:) , . ▼					
			FL	GS1 Bi					<u>ч</u> ,	Y .:					
	7 6	5	4	3	2	1	0			_	FLGS	BI			
C	<u> </u>	-		-	-	-	-		6	5	4	3	2	1	0
	C -	∥ :							-	-	C	-		-	
W) E							w ·	С , . :						
I	≤			1 1.				v		D			T T	• J-	$\left \right $
		-							₩,	-	(•	
-	battery	replo	rced .	, (B ▼),. Y		ار د ۲	1	` 4 -	- 64	.	2050		1- ·	
	2050	. T	1 ['в 1	ni de la	مار المرا م		Y Y				ge .Y, (
\mathbf{v}	- Y	1 -	1. 1.			ED 1.	U, Y	2050	D , [AC	= D.		Y,
	B	= 1 ₋ ,	1	Y	, ۲	Y		Т. Т.,	T.			/~ , - , - : - :	· ~ ·		
-	В Т	, -, Y .	_		_			, ∎, ,		C Y,			<u></u>	Y 6%	
		+++		GS1 Bi					· · · •						
┝╋	7 6	5	4	3	2		0		y 2	hác l	raye Yare	31 -	Y -	> _	r.
4	- B		-		-] ∎ ∕		'II			.	(o C
w	В	.:								- I I					
*	B B		. 🖞 , .		AC =	D,					FLGS	1 84			
	- Y	, - I,	·	ŧD.	Y , , . Y .			7	6	5	4	3	2	1	o
	ן וי	1 1	•. •.	, I			` _	-	-	-		D		-	-
	protecto	or stati	us . Y ,						P					I	ľ
,		* I	1-	A' .?	, , , Y			¥1	D			, PAG		-	
~ 1×		,, ₹				" 1 ,""		0	Y		, ED	17		- X - ,	
									~ •		••• • Y				I
								1	•,	- 11-	Y , . Y .	- ' A(3 =	D	
													1		
	'							13							
		I.	'			'									
			I		l	'									
	,			l		,									

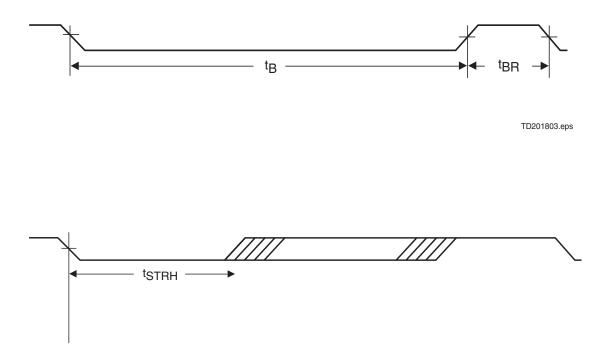
$\begin{array}{c} C \\ C $	
$\begin{array}{c} \mathbf{AC} \\ \mathbf{C} \\ \mathbf$	
Ba e V lage Regi e (VSB) Y = 0B), $Y = 12B = 1.2$ * ($B = 256$).	
7 6 5 4 3 2 1 0 87 86 5 4 3 2 1 0 4 87 86 85 84 83 82 81 80 V 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
ED F) 25 A2, ED 1. FD 1 ED 1. ED 7. ED	
VTS Regi e Bi Image: Second system 7 6 5 4 3 2 1 0 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0	
C m en a ed A ailable Cha ge Regi e (CACT/CACD) CACD $(V = 0E$ $V = 0E$ CACD $(V = 0E$ $V = 0E$ $V = 0E$ AC	

g am Pin F II C Ρ (PPFC) n Ţ 2050 . ί. 7 ŀ ., YY 1.1 . 1 ~ . -

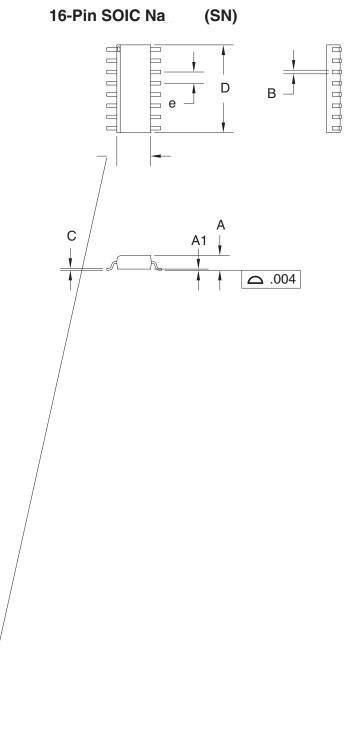
DC V I age Th e h Id $(T_A = T_{OPR}; V = 3.0 \quad 6.5V)$

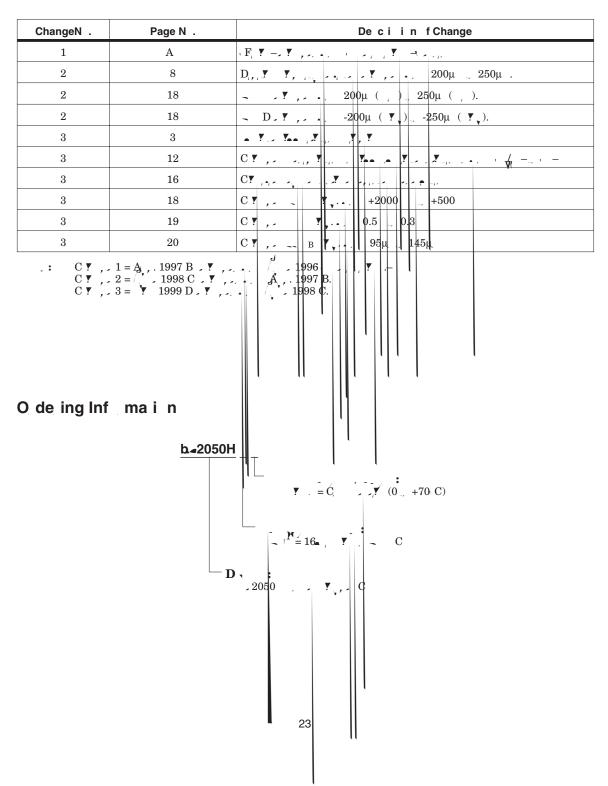
S.mb I	Pa ame e	Minim m	T. ical	Ma im m	Uni N
ED 1	F	, 0.73	0.76	0.79	- B, - Y , .
ED F	F , Y Y	, ED 1-0.035	ED 1-0.025	ED 1-0.015	- B, - Y , -
-		-300	-	+500	- , - +
-	F, Y Y				
	l				

S.mb I	Pa ame e	Minim m	T. ical	Ma im m	Uni	
CC	- p. 1. I.,.	3.0	4.25	6.5		CC
-		-	±50	±150	μ	$\overline{D_{-}} = CC$
		5.7	6.0	6.3		$EF = 5\mu A$
EF	-40 C +85 C	4.5	-	7.5		$EF = 5\mu A$
EF	···· · · · · · · · · · · · · · · · · ·	2.0	5.0	-	Ω	EF = 3
		-	90	135	μA	CC = 3.0, $D = 0$
CC		-	120	180	μA	$_{\rm CC} = 4.25$, D = 0
		-	170	250	μA	CC = 6.5, $D = 0$
<u> </u>		0	-	CC		
<u> </u>	B, a , a , Y	10	-	-		0 < _ B < CC
D.,	D	-	-	5	μA	
C	C , , , , , , , , , , , , , , , , , , ,	-0.2	-	0.2	μA	$\overline{D_{-}} = CC$
В	B Y Y	-	-	100	A	B > CC < 3'
D		500 10	-	-	Ω	200 4 77
-			-	-	Ω	
FC		- CC - 0.2	-	+ 0.2		1 5 1 5
FC FC	<mark>╴╴┫╷╂╽╺╴┧┈╏╴</mark>	- • • •	-	• • • • • • • • • • • • • • • • • • • •		1.5
	El., , , , CC	-	0.1	-		$CC = 3$, ≤ 1.75 A
-	- E	-	0.4	-		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	C C CC	CC - 0.3	-	-		CC = 3, $C = -5.25$ A
	C C CC	CC - 0.6	-	-		CC > 3.5, $C = -33.0$ A
_	E	11.0	-	-	Α	A $= 0.4$, CC = 6.5
		5.0	-	-	Α	A = $+ 0.3$, D
	<u> </u>	-	-	0.3		≤ 5 A, D
D	D , • , , ,	2.5	-	-		D
D	D ,	-	-	0.8		D
	· • · · · • · · · · · · · · · · · · · ·	2.5	-	-		- A
		-	-	0.5		- A
	· · · · · · · · · · · · · · · · · · ·	-	-	200	Ω	1.5
F A	F.Y. Y. Y. A.Y.	-	5	-	Ω	1 5
:			19			


DC Elec ical Cha ac e i ic (TA = TOPR)

b⊿2050H


S.mb I	Pa ame e	Minim m	T. ical	Ma im m	Uni	N e
C C	C ,	190	-	-	μ.	
C CB	C	190	205	250	μ.	
~	2050 (5	-	-		
- B	, 2050 ()	32	-	-	μ.	
D		-	-	50	μ.	
D B		-	-	50	μ	
. D		90	-	-	μ.	
D		-	-	80	μ.	
		-	-	145	μ.	
B		-	-	145	μ.	
		190	-	320	μ	
B	В.7.	190	-	-	μ.	
- B	B.T	40	-	-	μ.	
:	$\mathbf{D} = \mathbf{Y}_{i} = \mathbf{Y}_{i} = \mathbf{D}_{i} + \cdots + \mathbf{Y}_{i} = \mathbf{D}_{i} + \cdots + \mathbf{Y}_{i}$		CC			D , , , , , ,


High-S eed Se ial C mm nica i n Timing S ecifica i $n (T_A = T_{OPR})$

b.-2050H

Da a Shee Rei i n Hi

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

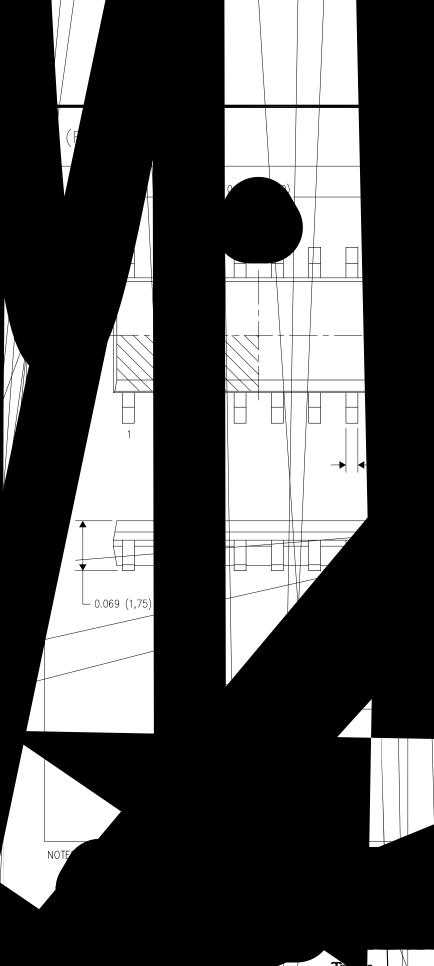
Copyright © 1999, Texas Instruments Incorporated

26-Jan-2013

TAPE AND REEL INFORMATION

				-	~ ~ ~
Nameter.					i i i i i i i i i i i i i i i i i i i
Alexandra and					
	1 of 1 Offshap ha		conter neetrantination		2
			el Width (W1)		
	flight fig.		*		
		<u> </u>	ntert Yalo 0)procket no es." //	
we we y				Josh T.	h and h
	User Obreethere.	the sector and and a			/
	Announced in the second data in the				
B I I O I I I					

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	· · ·	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ2050HSN-A508TR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ2050HSN-A508TR	SOIC	D	16	2500	367.0	367.0	38.0

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Publication IPC-7351 is recommended for alternate designs.

D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

S S www.ti.com