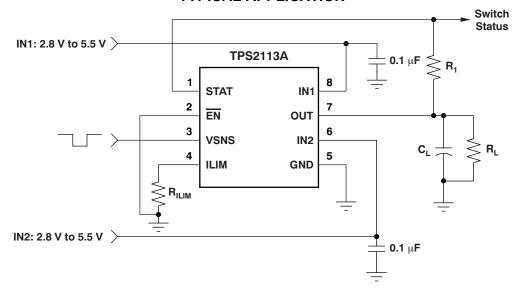


AUTOSWITCHING POWER MUX

Check for Samples: TPS2112A, TPS2113A

FEATURES

- Two-Input, One-Output Power Multiplexer with Low r_{DS(on)} Switches:
 - 84 mΩ Typ (TPS2113A)
 - 120 mΩ Typ (TPS2112A)
- Reverse and Cross-Conduction Blocking
- Wide Operating Voltage: 2.8 V to 5.5 V
- Low Standby Current: 0.5 μA Typ
- Low Operating Current: 55 μA Typ
- Adjustable Current Limit
- Controlled Output Voltage Transition Time:
 - Limits Inrush Current
 - Minimizes Output Voltage Hold-Up Capacitance
- CMOS- and TTL-Compatible Control Inputs
- Auto-Switching Operating Mode
- Thermal Shutdown
- Available in TSSOP-8 and 3-mm x 3-mm SON-8 Packages


APPLICATIONS

- PCs
- PDAs
- Digital Cameras
- Modems
- Cell Phones
- Digital Radios
- MP3 Players

DESCRIPTION

The TPS211xA family of power multiplexers enables seamless transition between two power supplies (such as a battery and a wall adapter), each operating at 2.8 V to 5.5 V and delivering up to 2 A, depending on package. The TPS211xA family includes extensive protection circuitry, including user-programmable current limiting, thermal protection, inrush current control, seamless supply transition, cross-conduction blocking, and reverse-conduction blocking. These features greatly simplify designing power multiplexer applications.

TYPICAL APPLICATION

A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

AVAILABLE OPTIONS

FEATURE		TPS2110A	TPS2111A	TPS2112A	TPS2113A	TPS2114A	TPS2115A
Current Limit Adjustment Range		0.31 A to 0.75 A	0.63 A to 1.25 A	0.31 A to 0.75 A	0.63 A to 2 A	0.31 A to 0.75 A	0.63 A to 2 A
Cwitching Mades	Manual	Yes	Yes	No	No	Yes	Yes
Switching Modes	Automatic	Yes	Yes	Yes	Yes	Yes	Yes
Switch Status Output		No	No	Yes	Yes	Yes	Yes

DEVICE INFORMATION⁽¹⁾

T _A	PACKAGE	I _{OUT} (A)	ORDERING NUMBER	PACKAGE MARKING
	TCCOD 0 (DM)	0.75	TPS2112APW	2112A
-40°C to +85°C	TSSOP-8 (PW)	1.25	TPS2113APW	2113A
	SON-8 (DRB)	2	TPS2113ADRB	PTOI

⁽¹⁾ For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS(1)

Over recommended junction temperature range, unless otherwise noted.

		TPS2112A, TPS2113A	UNIT	
Input voltage range at pin	s IN1, IN2, $\overline{\text{EN}}$, VSNS, ILIM ⁽²⁾	-0.3 to 6	V	
Output voltage range, V _{O(}	DUT), V _{O(STAT)} (2)	-0.3 to 6	V	
Output sink current, IO(STA	T)	5	mA	
	TPS2112APW	0.9	Α	
Continuous output current	, I _O TPS2113APW	1.5	A A	
	TPS2113ADRB, T _J ≤ 105°C	2.5		
Continuous total power di	sipation	See Dissipation Ratings table		
Junction temperature		Internally Limite	ed	
Human body mo	del (HBM)	2	kV	
Charged device	model (CDM)	500	V	

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS

PACKAGE	DERATING FACTOR ABOVE T _A = 25°C	T _A ≤ 25°C POWER RATING	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
TSSOP-8 (PW)	3.9 mW/°C	387 mW	213 mW	155 mW
SON-8 (DRB) ⁽¹⁾	25.0 mW/°C	2.50 mW	1.38 mW	1.0 W

(1) See TI application note SLMA002 for mounting recommendations.

⁽²⁾ All voltages are with respect to GND.

RECOMMENDED OPERATING CONDITIONS

		TPS211	TPS2112A, TPS2113A		
		MIN	NOM MAX	UNIT	
Input voltage at IN1, V _{I(IN1)}	V _{I(IN2)} ≥ 2.8 V	1.5	5.5		
	V _{I(IN2)} < 2.8 V	2.8	5.5	V	
Input voltage at IN2 V	V _{I(IN1)} ≥ 2.8 V	1.5	5.5	V	
Input voltage at IN2, $V_{I(IN2)}$	V _{I(IN1)} < 2.8 V	2.8	5.5		
Input voltage: $V_{I(\overline{EN})}$, $V_{I(VSNS)}$		0	5.5	V	
	TPS2112APW	0.31	0.75	^	
Nominal current limit adjustment range, $I_{O(OUT)}^{(1)}$	TPS2113APW	0.63	1.25	Α	
.0(001)	TPS2113ADRB, T _J ≤ 105°C	0.63	2	Α	
Operating virtual junction temperature, T	-40	125	°C		

⁽¹⁾ Minimum recommended current limit is based on accuracy considerations.

ELECTRICAL CHARACTERISTICS: Power Switch

Over recommended operating junction temperature, $R_{ILIM} = 400 \Omega$, unless otherwise noted.

	TPS2112A					TPS2113A				
PARAMETER TEST CONDITIONS		CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
		$V_{I(IN1)} = V_{I(IN2)} = 5.0 \text{ V}$		120	140		84	110		
	$T_J = 25^{\circ}C$, $I_L = 500 \text{ mA}$	$V_{I(IN1)} = V_{I(IN2)} = 3.3 \text{ V}$		120	140		84	110	$m\Omega$	
Drain-source on-state	- (1)	1 - 000 1111 ($V_{I(IN1)} = V_{I(IN2)} = 2.8 \text{ V}$		120	140		84	110	
resistance (INx-OUT)	r _{DS(on)} ⁽¹⁾	T _J = 125°C, I _L = 500 mA	$V_{I(IN1)} = V_{I(IN2)} = 5.0 \text{ V}$			220			150	
(110X-001)			$V_{I(IN1)} = V_{I(IN2)} = 3.3 \text{ V}$			220			150	$m\Omega$
			$V_{I(IN1)} = V_{I(IN2)} = 2.8 \text{ V}$			220			150	

⁽¹⁾ The TPS211xA can switch a voltage as low as 1.5 V as long as there is a minimum of 2.8 V at one of the input power pins. In this specific case, the lower supply voltage has no effect on the IN1 and IN2 switch on-resistances.

ELECTRICAL CHARACTERISTICS

Over recommended operating junction temperature, $I_{\Omega/\Omega,TD} = 0$ A, and $R_{ILM} = 400 \Omega$, unless otherwise noted.

			TPS211				
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
LOGIC INPUTS (EN)							
High-level input voltage	V _{IH}		2			V	
Low-level input voltage	V _{IL}				0.7	V	
land to summent		EN = High, sink current			1		
Input current		EN = Low, source current	0.5	1.4	5	μA	
SUPPLY AND LEAKAGE	CURRENTS	·					
		$V_{I(VSNS)} = 1.5 \text{ V}, \overline{EN} = \text{Low (IN1 active)}, \ V_{I(IN1)} = 5.5 \text{ V}, \ V_{I(IN2)} = 3.3 \text{ V}$		55	90		
Supply current from IN1 (c	anaratina)	$V_{I(VSNS)}$ = 1.5 V, \overline{EN} = Low (IN1 active), $V_{I(IN1)}$ = 3.3 V, $V_{I(IN2)}$ = 5.5 V,		1	12		
Supply current from the (c	perating)	$V_{I(VSNS)} = 0$ V, $\overline{EN} = Low$ (IN2 active), $V_{I(IN1)} = 5.5$ V, $V_{I(IN2)} = 3.3$ V			75	μA	
		$V_{I(VSNS)} = 0 \text{ V}, \overline{EN} = \text{Low (IN2 active)}, $ $V_{I(IN1)} = 3.3 \text{ V}, V_{I(IN2)} = 5.5 \text{ V}$			1		
		$V_{I(VSNS)} = 1.5 \text{ V}, \overline{EN} = \text{Low (IN1 active)}, \ V_{I(IN1)} = 5.5 \text{ V}, \ V_{I(IN2)} = 3.3 \text{ V}$			1		
Supply current from IN2 (operating)		$V_{I(VSNS)} = 1.5 \text{ V}, \overline{EN} = \text{Low (IN1 active)}, \ V_{I(IN1)} = 3.3 \text{ V}, \ V_{I(IN2)} = 5.5 \text{ V}$			75	4	
		$V_{I(VSNS)} = 0 \text{ V}, \overline{EN} = \text{Low (IN2 active)}, $ $V_{I(IN1)} = 5.5 \text{ V}, V_{I(IN2)} = 3.3 \text{ V}$		1	12	μA	
		$V_{I(VSNS)} = 0 \text{ V}, \overline{EN} = \text{Low (IN2 active)}, V_{I(IN1)} = 3.3 \text{ V}, V_{I(IN2)} = 5.5 \text{ V}$		55	90		

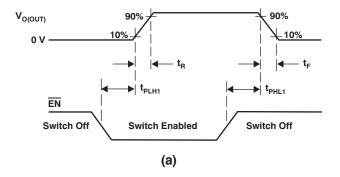
Over recommended operating junction temperature, $I_{O(OUT)} = 0$ A, and $R_{ILIM} = 400 \Omega$, unless otherwise noted.

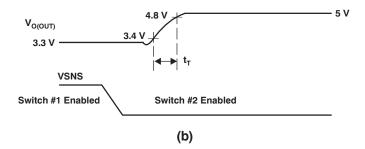
			TPS211	2A, TPS211	3A		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
SUPPLY AND LEAKAGE	CURRENTS, Cor	ntinued					
Outline and assessed from INIA	(ata a dla . ·)	$\overline{\rm EN}$ = High (inactive), V _{I(IN1)} = 5.5 V, V _{I(IN2)} = 3.3 V		0.5	2		
Quiescent current from IN1	(standby)	$\overline{\rm EN}$ = High (inactive), $V_{\rm I(IN1)}$ = 3.3 V, $V_{\rm I(IN2)}$ = 5.5 V			1	μA	
0		$\overline{\text{EN}}$ = High (inactive), $V_{\text{I(IN1)}}$ = 5.5 V, $V_{\text{I(IN2)}}$ = 3.3 V			1		
Quiescent current from IN2	(standby)	$\overline{\rm EN}$ = High (inactive), V _{I(IN1)} = 3.3 V, V _{I(IN2)} = 5.5 V		0.5	2	μA	
Forward leakage current from (measured from OUT to GN		$\overline{\text{EN}}$ = High (inactive), $V_{\text{I(IN1)}}$ = 5.5 V, IN2 open, $V_{\text{O(OUT)}}$ = 0 V (shorted), T_{J} = 25°C		0.1	5	μΑ	
Forward leakage current from (measured from OUT to GN		$\overline{\text{EN}}$ = High (inactive), $V_{\text{I(IN2)}}$ = 5.5 V, IN1 open, $V_{\text{O(OUT)}}$ = 0 V (shorted), T_{J} = 25°C		0.1	5	μΑ	
Reverse leakage current to from INx to GND)	INx (measured	$\overline{\text{EN}}$ = High (inactive), $V_{\text{I(INx)}}$ = 0 V, $V_{\text{O(OUT)}}$ = 5.5 V, T_{J} = 25°C		0.3	5	μΑ	
STAT OUTPUT							
Leakage current		$V_{O(STAT)} = 5.5 \text{ V}$		0.01	1	μΑ	
Saturation voltage		I _{I(STAT)} = 2 mA, IN1 switch is on		0.13	0.4	٧	
Deglitch time (falling edge only)				150		μs	
CURRENT LIMIT CIRCUIT							
	TPS2112A	$R_{ILIM} = 400 \Omega$	0.51	0.63	0.80	Ι Λ	
Current limit accuracy	1F32112A	$R_{ILIM} = 700 \Omega$	0.30	0.36	0.50	Α	
Current limit accuracy	TDC2442A	$R_{ILIM} = 400 \Omega$	0.95	1.25	1.56	Α	
	TPS2113A	$R_{ILIM} = 700 \Omega$	0.47	0.71	0.99	A	
Current limit settling time	t _d	Time for short-circuit output current to settle within 10% of its steady state value.		1		ms	
Input current at ILIM		V _{I(ILIM)} = 0 V	-15		0	μΑ	
VSNS COMPARATOR							
VCNC through ald walte as		V _{I(VSNS)} ↑	0.78	0.80	0.82	V	
VSNS threshold voltage		$V_{I(VSNS)} \downarrow$	0.735	0.755	0.775	V	
VSNS comparator hysteres	is		30		60	mV	
Deglitch of VSNS comparat	or (both ↑↓)		90	150	220	μs	
Input current		0 V ≤ V _{I(VSNS)} ≤ 5.5 V	-1		1	μΑ	
UVLO							
1114 1110 1111/10		Falling edge	1.15	1.25		.,	
IN1 and IN2 UVLO		Rising edge		1.30	1.35	V	
IN1 and IN2 UVLO hysteres	sis		30	57	65	mV	
Internal V _{DD} UVLO (the high	ner of IN1 and	Falling edge	2.4	2.53			
IN2)		Rising edge		2.58	2.8	V	
Internal V _{DD} UVLO hysteres	sis		30	50	75	mV	
UVLO deglitch for IN1, IN2		Falling edge		110		μs	

Over recommended operating junction temperature, $I_{O(OUT)} = 0$ A, and $R_{ILIM} = 400 \Omega$, unless otherwise noted.

			TPS211	2A, TPS211:	ВА	
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
REVERSE CONDUCTION E	BLOCKING				•	
Minimum output-to-input voltage difference to block switching	$\Delta V_{O(I_block)}$	$\overline{\text{EN}}$ = high, $V_{\text{I(IN1)}}$ = 3.3 V and $V_{\text{I(IN2)}}$ = $V_{\text{I(VSNS)}}$ = 0 V. Connect OUT to a 5-V supply through a series 1-k Ω resistor. Let $\overline{\text{EN}}$ = low. Slowly decrease the supply voltage until OUT connects to IN1.	80	100	120	mV
THERMAL SHUTDOWN						
Thermal shutdown threshold	I	TPS211xA is in current limit.	135			°C
Recovery from thermal shute	down	TPS211xA is in current limit.	125			°C
Hysteresis				10		°C
IN2-IN1 COMPARATORS						
Hysteresis of IN2-IN1 comp	arator		0.1		0.2	V
Deglitch of IN2−IN1 comparator (both ↑ ↓)			10	20	50	μs

SWITCHING CHARACTERISTICS


Over recommended operating junction temperature, $V_{I(IN1)} = V_{I(IN2)} = 5.5 \text{ V}$, and $R_{ILIM} = 400 \Omega$, unless otherwise noted.


				TI	PS2112A		TI	PS2113A		
Р	ARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _R	Output rise time from an enable	$V_{I(IN1)} = V_{I(IN2)} = 5 \text{ V},$ $V_{I(SNS)} = 1.5 \text{ V}$	$T_J = 25^{\circ}C,$ $C_L = 1 \mu\text{F},$ $I_L = 500 \text{mA}; \text{see}$ Figure 1(a).	0.5	1.0	1.5	1	1.8	3	ms
t _F	Output fall time from a disable	$V_{I(IN1)} = V_{I(IN2)} = 5 \text{ V},$ $V_{I(SNS)} = 1.5 \text{ V}$	$T_J = 25^{\circ}C,$ $C_L = 1 \ \mu\text{F},$ $I_L = 500 \ \text{mA}; \text{see}$ Figure 1(a).	0.35	0.5	0.7	0.5	1	2	ms
t _T	Transition time	IN1 to IN2 transition, $\begin{split} &V_{I(IN1)}=3.3\ V,\\ &V_{I(IN2)}=5\ V,\\ &V_{I(EN)}=0\ V \end{split}$	T_J = 125°C, C_L = 10 μF, I_L = 500 mA; measure transition time as 10% to 90% rise time or from 3.4 V to 4.8 V on $V_{O(OUT)}$. See Figure 1(b).		40	60		40	60	μs
t _{PLH1}	Turn-on propagation delay from an enable	$ \begin{array}{l} V_{I(IN1)} = VI_{(IN2)} = 5 \text{ V} \\ \text{Measured from enable to} \\ 10\% \text{ of } V_{O(OUT)}, \ V_{I(SNS)} = \\ 1.5 \text{ V} \end{array} $	$T_J = 25^{\circ}C$, $C_L = 10 \mu\text{F}$, $I_L = 500 \text{mA}$; see Figure 1(a).		0.5			1		ms
t _{PHL1}	Turn-off propagation delay from a disable	$\begin{aligned} &V_{I(IN1)} = VI_{(IN2)} = 5 \text{ V} \\ &\text{Measured from disable to} \\ &90\% \text{ of } V_{O(OUT)}, \ V_{I(SNS)} = \\ &1.5 \text{ V} \end{aligned}$	$T_J = 25^{\circ}C$, $C_L = 10 \mu\text{F}$, $I_L = 500 \text{mA}$; see Figure 1(a).		3			5		ms
t _{PLH2}	Switch-over rising propagation delay		$T_J = 25^{\circ}\text{C},$ $C_L = 10 \mu\text{F},$ $I_L = 500 \text{mA}; \text{see}$ Figure 1(c).		40	100		40	100	μs
t _{PHL2}	Switch-over falling propagation delay	$ \begin{array}{c} \text{Logic 0 to Logic 1} \\ \text{transition on VSNS,} \\ V_{I(IN1)} = 1.5 \text{ V,} \\ V_{I(IN2)} = 5 \text{ V,} \\ V_{I(EN)} = 0 \text{ V,} \\ \text{Measured from VSNS to} \\ 90\% \text{ of } V_{O(OUT)} \\ \end{array} $	$T_J = 25^{\circ}\text{C},$ $C_L = 10 \mu\text{F},$ $I_L = 500 \text{mA}; \text{see}$ Figure 1(c).	2	3	10	2	5	10	ms

PARAMETER MEASUREMENT INFORMATION

TIMING WAVEFORMS

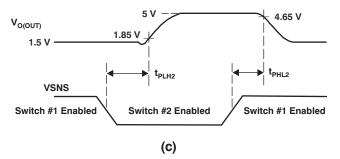


Figure 1. Propagation Delays and Transition Timing Waveforms

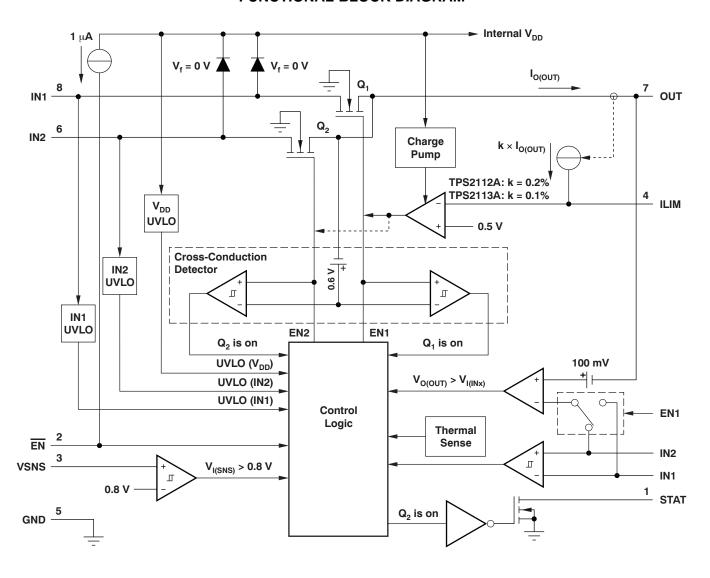
DEVICE INFORMATION

TRUTH TABLE

EN	$V_{I(VSNS)} > 0.8 V^{(1)}$	$V_{I(IN2)} > V_{I(IN1)}$	STAT	OUT ⁽²⁾
0	Yes	X	0	IN1
0	No	No	0	IN1
0	No	Yes	Hi-Z	IN2
1	X	X	0	Hi-Z

⁽¹⁾ X = Don't care.

PIN CONFIGURATIONS


Table 1. TERMINAL FUNCTIONS

TERM	IINAL		
NAME	NO.	I/O	DESCRIPTION
EN	2	1	TTL- and CMOS-compatible input with a 1- μ A pull-up. The Truth Table illustrates the functionality of $\overline{\text{EN}}$.
GND	5	Power	Ground
IN1	8	1	Primary power switch input. The IN1 switch can be enabled only if the IN1 supply is above the UVLO threshold and at least one supply exceeds the internal V_{DD} UVLO.
IN2	6	1	Secondary power switch input. The IN2 switch can be enabled only if the IN2 supply is above the UVLO threshold and at least one supply exceeds the internal V _{DD} UVLO.
ILIM	4	I	A resistor ($R_{\rm ILIM}$) from ILIM to GND sets the current limit ($I_{\rm L}$) to 250/ $R_{\rm ILIM}$ and 500/ $R_{\rm ILIM}$ for the TPS2112A and TPS2113A, respectively.
OUT	7	0	Power switch output
STAT	1	0	STAT is an open-drain output that is Hi-Z if the IN2 switch is ON. STAT pulls low if the IN1 switch is ON or if OUT is Hi-Z (that is, $\overline{\text{EN}}$ is equal to logic '0')
VSNS	3	I	An internal power FET connects OUT to IN1 if the VSNS voltage is greater than 0.8 V. Otherwise, the FET connects OUT to the higher of IN1 and IN2. The Truth Table illustrates the functionality of VSNS.
Pad	_	Power	DRB package only. Connect to GND. Must be connected to large copper area in order to meet stated package dissipation ratings.

⁽²⁾ The undervoltage lockout circuit causes the output (OUT) to go Hi-Z if the selected power supply does not exceed the IN1/IN2 UVLO, or if neither of the supplies exceeds the internal V_{DD} UVLO.

FUNCTIONAL BLOCK DIAGRAM

TYPICAL CHARACTERISTICS

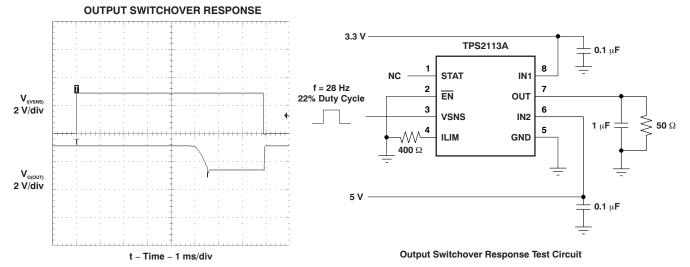


Figure 2.

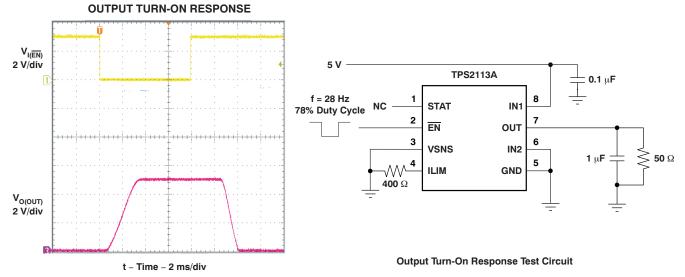
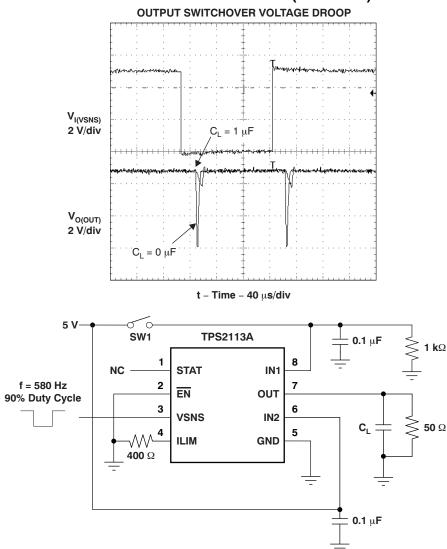
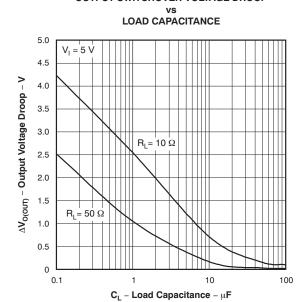
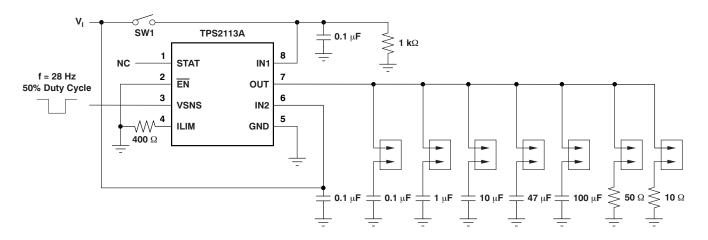



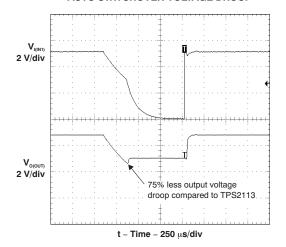
Figure 3.

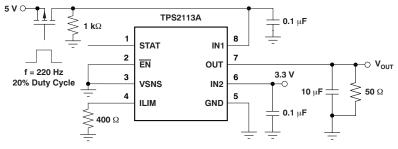



Output Switchover Voltage Droop Test Circuit Figure 4.

Note: To initialize the TPS2113A for this test, set input VSNS equal to 0 V, turn on the 5-V supply, and then turn on switch SW1.

OUTPUT SWITCHOVER VOLTAGE DROOP




Output Switchover Voltage Droop Test Circuit Figure 5.

Note: To initialize the TPS2113A for this test, set input VSNS equal to 0 V, turn on the V_I supply, and then turn on switch SW1.

AUTO SWITCHOVER VOLTAGE DROOP

Auto Switchover Voltage Droop Test Circuit

Figure 6.

INRUSH CURRENT
VS
LOAD CAPACITANCE

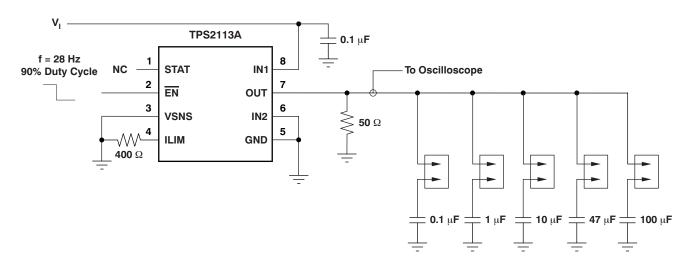
300
250
V₁ = 5 V
V₁ = 3.3 V

40

 $\textbf{C}_{\textbf{L}} - \textbf{Load Capacitance} - \mu \textbf{F}$

60

80


100

50

0

0

20

Output Capacitor Inrush Current Test Circuit Figure 7.

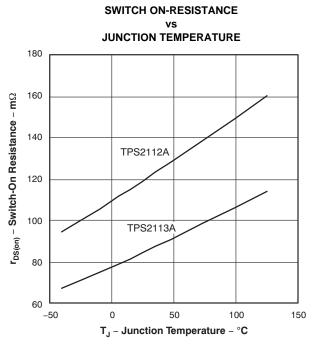
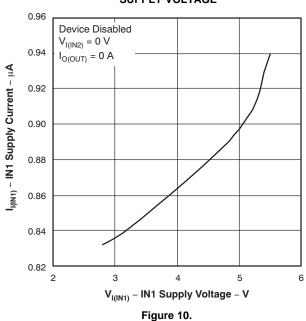
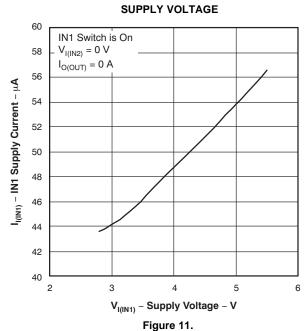
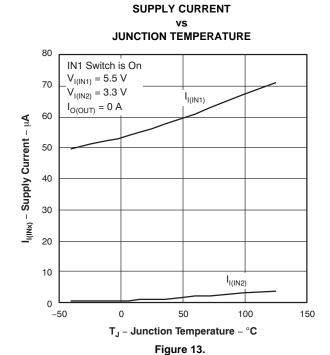



Figure 8.


SUPPLY VOLTAGE 120 TPS2112A 115 $r_{DS(on)}$ – Switch-On Resistance – $m\Omega$ 110 105 100 95 90 TPS2113A 85 80 3 6 5 V_{I(INx)} - Supply Voltage - V Figure 9.

SWITCH ON-RESISTANCE

IN1 SUPPLY CURRENT vs



TYPICAL CHARACTERISTICS (continued) SUPPLY CURRENT SU

JUNCTION TEMPERATURE 1.2 Device Disabled $V_{I(IN1)} = 5.5 \text{ V}$ $V_{I(IN2)}^{'} = 3.3 \text{ V}$ 1.0 $I_{O(OUT)} = 0 A$ I_(INx) – Supply Current – μA I_{I(IN1)} = 5.5 V 8.0 0.6 0.2 $I_{I(IN2)} = 3.3 \text{ V}$ 0 -50 0 50 100 150

 T_J – Junction Temperature – °C Figure 12.

Copyright © 2004–2012, Texas Instruments Incorporated

APPLICATION INFORMATION

Some applications have two energy sources, one of which should be used in preference to another. Figure 14 shows a circuit that will connect IN1 to OUT until the voltage at IN1 falls below a user-specified value. Once the voltage on IN1 falls below this value, the TPS2112A/3A will select the higher of the two supplies. This usually means that the TPS2112A/3A will swap to IN2.

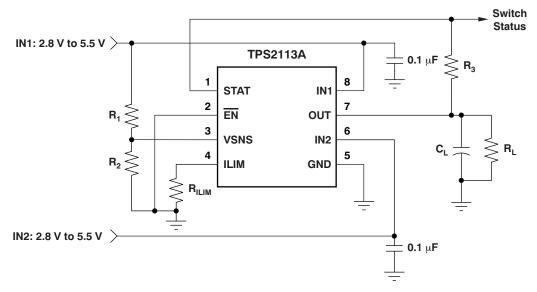


Figure 14. Auto-Selecting for a Dual Power-Supply Application

In Figure 15, the multiplexer selects between two power supplies based upon the VSNS logic signal. OUT connects to IN1 if VSNS is logic '1'; otherwise, OUT connects to IN2 if V_{IN2} is greater than V_{IN1} . The logic thresholds for the VSNS terminal are compatible with both TTL and CMOS logic.

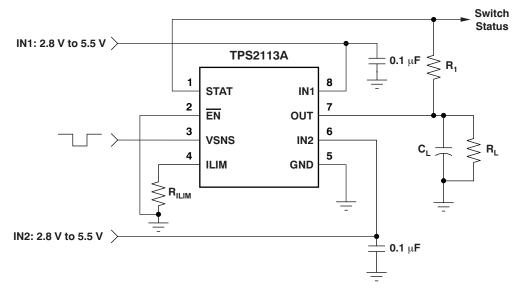


Figure 15. Manually Switching Power Sources

DETAILED DESCRIPTION

AUTO-SWITCHING MODE

The TPS2112A/3A only supports the auto-switching mode. In this mode, OUT connects to IN1 if $V_{I(VSNS)}$ is greater than 0.8 V, otherwise OUT connects to the higher of IN1 and IN2.

The VSNS terminal includes hysteresis equal to 3.75% to 7.5% of the threshold selected for transition from the primary supply to the higher of the two supplies. This hysteresis helps avoid repeated switching from one supply to the other due to resistive drops.

N-CHANNEL MOSFETs

Two internal high-side power MOSFETs implement a single-pole double-throw (SPDT) switch. Digital logic selects the IN1 switch, IN2 switch, or no switch (Hi-Z state). The MOSFETs have no parallel diodes so output-to-input current cannot flow when the FET is off. An integrated comparator prevents turn-on of a FET switch if the output voltage is greater than the input voltage.

CROSS-CONDUCTION BLOCKING

The switching circuitry ensures that both power switches will never conduct at the same time. A comparator monitors the gate-to-source voltage of each power FET and allows a FET to turn on only if the gate-to-source voltage of the other FET is below the turn-on threshold voltage.

REVERSE-CONDUCTION BLOCKING

When the TPS211xA switches from a higher-voltage supply to a lower-voltage supply, current can potentially flow back from the load capacitor into the lower-voltage supply. To minimize such reverse conduction, the TPS211xA will not connect a supply to the output until the output voltage has fallen to within 100 mV of the supply voltage. Once a supply has been connected to the output, it will remain connected regardless of output voltage.

CHARGE PUMP

The higher of supplies IN1 and IN2 powers the internal charge pump. The charge pump provides power to the current limit amplifier and allows the output FET gate voltage to be higher than the IN1 and IN2 supply voltages. A gate voltage that is higher than the source voltage is necessary to turn on the N-channel FET.

CURRENT LIMITING

A resistor R_{ILIM} from ILIM to GND sets the current limit to 250/R_{ILIM} and 500/R_{ILIM} for the TPS2112A and TPS2113A, respectively. Setting resistor R_{ILIM} equal to zero is not recommended as that disables current limiting.

OUTPUT VOLTAGE SLEW-RATE CONTROL

The TPS2112A/3A slews the output voltage at a slow rate when OUT switches to IN1 or IN2 from the Hi-Z state (see the Truth Table). A slow slew rate limits the inrush current into the load capacitor. High inrush currents can glitch the voltage bus and cause a system to hang up or reset. It can also cause reliability issues—like pit the connector power contacts, when hot-plugging a load such as a PCI card. The TPS2112A/3A slews the output voltage at a much faster rate when OUT switches between IN1 and IN2. The fast rate minimizes the output voltage droop and reduces the output voltage hold-up capacitance requirement.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Ci	nanges from Revision B (March 2010) to Revision C	Page
•	Changed description of power supplies in <i>Description</i> section	1
•	Changed Current Limit Adjustment Range parameter TPS2113A and TPS2115A specifications in Available Options	;
	table	2
•	Added I _{OUT} column to Device Information table, changed table name	2
•	Changed Continuous output current parameter in Absolute Maximum Ratings table	2
•	Changed Current limit adjustment range parameter in Recommended Operating Conditions table	3
•	Added footnote 1 to Recommended Operating Conditions table	3
•	Changed second paragraph in Application Information section	16
•	Changed second paragraph in Application Information section	16
	Changed second paragraph in Application Information section	16
		Page
CI	nanges from Revision A (February, 2006) to Revision B Updated document to current format	Page
CI	nanges from Revision A (February, 2006) to Revision B	Page
Cl	Updated document to current format	Page 1 2
Cl	Updated document to current format	Page 1 2 2

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
TPS2112APW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2112A	Samples
TPS2112APWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2112A	Samples
TPS2112APWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2112A	Samples
TPS2112APWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2112A	Samples
TPS2113ADRBR	ACTIVE	SON	DRB	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PTOI	Samples
TPS2113ADRBT	ACTIVE	SON	DRB	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PTOI	Samples
TPS2113APW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2113A	Samples
TPS2113APWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2113A	Samples
TPS2113APWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2113A	Samples
TPS2113APWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2113A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

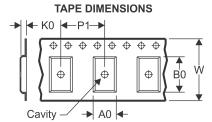
PACKAGE OPTION ADDENDUM

11-Apr-2013

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

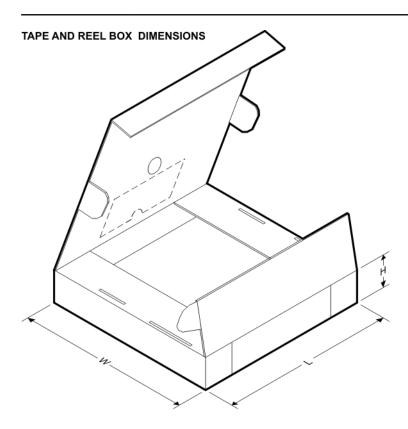

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 11-Jun-2013

TAPE AND REEL INFORMATION

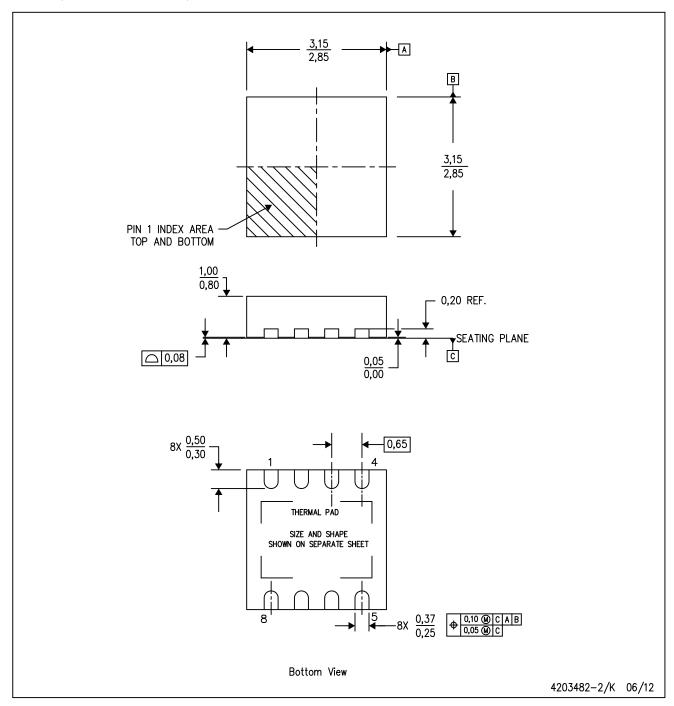
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All differsions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS2112APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TPS2113ADRBR	SON	DRB	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2113ADRBT	SON	DRB	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2113APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

www.ti.com 11-Jun-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS2112APWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TPS2113ADRBR	SON	DRB	8	3000	367.0	367.0	35.0
TPS2113ADRBT	SON	DRB	8	250	210.0	185.0	35.0
TPS2113APWR	TSSOP	PW	8	2000	367.0	367.0	35.0

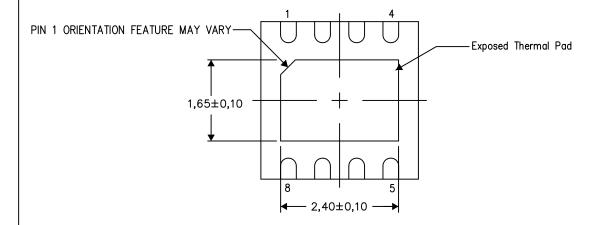
DRB (S-PVSON-N8)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Small Outline No-Lead (SON) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

DRB (S-PVSON-N8)


PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

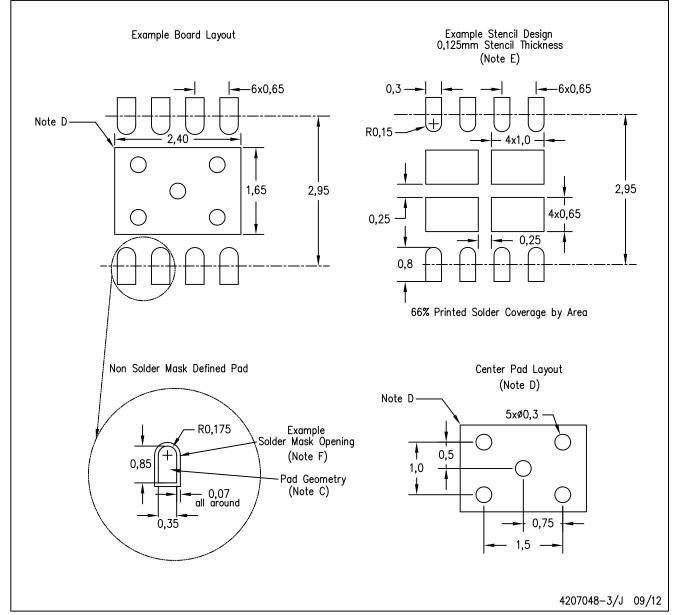
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

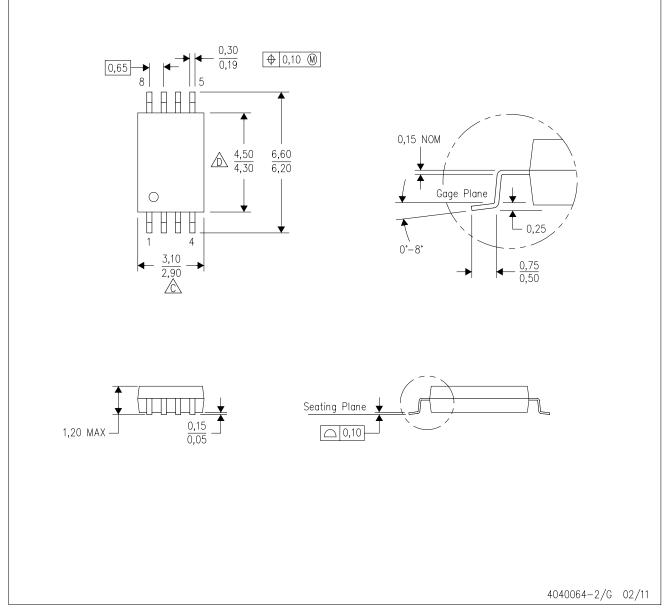
Exposed Thermal Pad Dimensions


4206340-3/N 09/12

NOTE: All linear dimensions are in millimeters

DRB (S-PVSON-N8)

PLASTIC SMALL OUTLINE NO-LEAD


NOTES:

- S: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - F. Customers should contact their board fabrication site for solder mask tolerances.

PW (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>