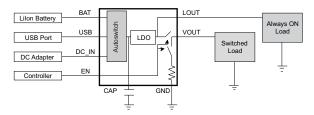


SLVSB34-OCTOBER 2011


Small, Triple-Input Power Multiplexer with Auto-Select and Low Drop-out Voltage Regulator

Check for Samples: TPS22933

FEATURES

- Three Integrated Load Switches Automatically Choose Highest Input
- Integrated 3.6-V fixed LDO
- · Switched and Always on LDO Outputs
- Small µQFN package 1.5mm × 1.5mm
- Input Voltage Range: 2.5-V to 12-V
- Low ON-Resistance (ron)
 - $r_{ON} = 2.4\Omega$ at VIN = 5.0-V
 - r_{ON} = 2.6Ω at VIN = 4.2-V
- 50-mA Maximum Continuous Current
- Low Threshold Control Input (EN)
- Switchover time 18-µs Typical

TYPICAL APPLICATION

APPLICATIONS

- Smart Phones
- GPS Devices
- Digital Cameras
- Portable Industrial Equipment
- Portable Medical Equipment
- Portable Media Players
- Portable Instrumentation

DESCRIPTION

The TPS22933 is a small, low r_{ON} , triple-input power multiplexer with auto-input selection and a Low Drop-Out linear regulator. The device contains three P-channel MOSFETs that can operate over an input voltage range of 2.5-V to 12-V. The TPS22933 automatically selects the highest level (from BAT, USB, and DC_IN) and enables that input to source the LDO. LOUT is an always-on output from the LDO. The Enable function (EN pin) allows VOUT to be switched on or off, enables a quick discharge resistor, and is capable of interfacing directly with low-voltage control signals.

The TPS22933 is available in a small, space-saving 8-pin μ QFN package and is characterized for operation over the free-air temperature range of -40°C to 85°C.

FEATURE LIST⁽¹⁾

	r _{ON} (typical) at 5.0 V	OUTPUT VOLTAGE	QUICK OUTPUT DISCHARGE	MAXIMUM OUTPUT CURRENT	VOUT ENABLE
TPS22933A	2.4 Ω	3.6 V	yes	50 mA	Active High

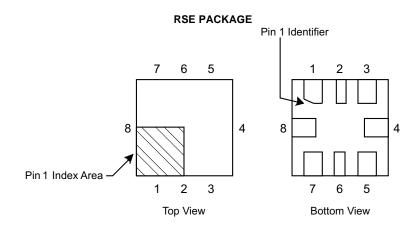
(1) This feature discharges the output of the switch to ground through a 64-Ω resistor, preventing the output from floating

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TPS22933

Texas Instruments

www.ti.com

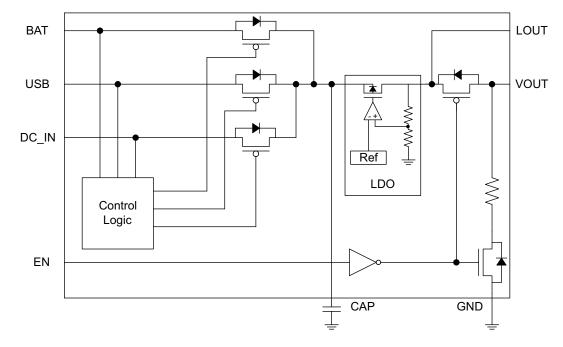


These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		PACKAGE ⁽¹⁾ ORDERABLE PART NUMBER		TOP-SIDE MARKING
–40°C to 85°C	RSE	Reel of 3,000	TPS22933ARSER	3.6 V	40
-40 C 10 85 C	(0.5mm pitch)	Reel of 250	TPS22933ARSET	3.0 V	4Q

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



PIN FUNCTIONS

P	N				
NUMBER	NAME	DESCRIPTION			
1	BAT	Source Voltage 1 (Battery)			
2	USB	Source Voltage 2 (V+ USB)			
3 DC_IN		Source Voltage 3 (DC Adapter)			
4	GND	Ground			
5	EN	VOUT Enable (Cannot be left floating)			
6	CAP	Capacitor for LDO			
7	VOUT	Switched LDO Output			
8 LOUT		Always on LDO Output			

BLOCK DIAGRAM

FUNCTION TABLE

EN	LDO to LOUT	LDO to VOUT	VOUT to GND		
L	ON	OFF	ON		
Н	ON	ON	OFF		

INPUT SELECTION TABLE (V1 > V2 > V3)

BAT	USB	DC_IN	LDO Supply
V1	V2 or V3	V2 or V3	BAT
V2 or V3	V1	V2 or V3	USB
V2 or V3	V2 or V3	V1	DC_IN
V1	V1	V1	See ⁽¹⁾

(1) Whichever source achieves the highest level the fastest will supply the LDO.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

			VALUE	UNIT
VIN	Input voltage range	BAT, USB, DC_IN	-0.3 to 14.0	V
VOUTPUT	Output voltage range	VOUT, LOUT	-0.3 to 6.0	V
VEN	Input voltage range	EN	-0.3 to 6.0	V
IMAX	Maximum continuous switch current	75	mA	
IPLS	Maximum pulsed switch current, puls	100	mA	
T _A	Operating free-air temperature range	e	-40 to 85	°C
T _{stg}	Storage temperature range		-65 to 150	°C
T _{lead}	Maximum lead temperature (10-s so	ldering time)	300	°C
505		Human-Body Model (HBM)	2000	14
ESD	Electrostatic discharge protection	Charged-Device Model (CDM)	1000	V

ISTRUMENTS

ÈXAS

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾	TPS22933	
		RSE (7 PINS)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	115.6	
θ_{JCtop}	Junction-to-case (top) thermal resistance	59.9	
θ_{JB}	Junction-to-board thermal resistance	27.4	°C/W
ΨJT	Junction-to-top characterization parameter	2.1	0/11
Ψ_{JB}	Junction-to-board characterization parameter	27.3	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	-	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

RECOMMENDED OPERATING CONDITIONS

			MIN	TYP	MAX	UNIT
V _{IN}		BAT, USB, DC_IN	2.5		12.0	V
V _{EN}	Input voltage range	EN	0.0		5.5	V
V _{IH}	EN pin High-level input voltage, (EN > V _{IH} Min, VOUT = LDO Output)	BAT = 2.5-V to 5.5-V, USB, DC_IN = 2.5-V to 12-V	1.15		5.5	V
V _{IL}	EN pin Low-level input voltage, (EN< V _{IL} Max, VOUT = pull-down)	BAT = 2.5-V to 5.5-V, USB, DC_IN = 2.5-V to 12-V	0.0		0.6	V
I _{OUT-LOUT}	LOUT Current	$\label{eq:VBAT} \begin{array}{l} V_{BAT} = 4.2 \ V \ OR \ V_{USB} = 5 \ V \ OR \ V_{DC_IN} = 5 \ V, \\ EN = 3.4 \ V, \ I_{OUT\text{-}VOUT} = 0 \ \text{mA} \end{array}$			50	mA
I _{OUT-VOUT}	VOUT Current	$\label{eq:VBAT} \begin{array}{l} V_{BAT} = 4.2 \mbox{ V OR } V_{USB} = 5 \mbox{ V OR } V_{DC_IN} = 5 \mbox{ V}, \\ EN = 3.4 \mbox{ V}, I_{OUT-LOUT} = 0 \mbox{ mA} \end{array}$			50	mA
I _{OUT-TOTAL}	LOUT + VOUT current	$V_{BAT} = 4.2 \text{ V OR } V_{USB} = 5 \text{ V OR } V_{DC_IN} = 5 \text{ V},$ EN = 3.4 V			50	mA
	LDO Capacitor (on CAP pin)		20 ⁽¹⁾			nF
CAP	LOUT Capacitor	LOUT Capacitor				
	VOUT Capacitor		1		μF	

(1) Refer to the application section

ELECTRICAL CHARACTERISTICS

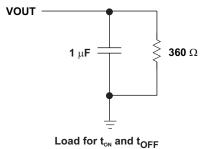
BAT = 2.5-V to 12.0-V, USB = 2.5-V to 12.0-V, DC_IN = 2.5-V to 12.0-V, T_A = -40°C to 85°C (unless otherwise noted)

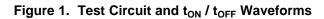
PARAMETER		TEST CONDITIONS ⁽¹⁾ ⁽²⁾ ⁽³⁾	T _A	MIN	TYP ⁽⁴⁾	MAX	UNIT	
	Operating current	$\begin{split} I_{OUT} &= 0 \text{ mA, } V_{BAT} = 4.2 \text{ V, } V_{USB} = 3 \text{ V,} \\ V_{DC_IN} &= 3 \text{ V, } EN = 3.4 \text{ V} \end{split}$	Full		9.2	15	μA	
I _{IN-BAT}	Quiescent current	I_{OUT} = 0, V_{BAT} = 4.2 V, V_{USB} = 5 V, V_{DC_IN} = 3 V, EN = 3.4 V	$V_{\text{USB}} = 5 \text{ V}, \text{ V}_{\text{DC}_{\text{IN}}} =$			2	μΑ	
1	Operating current	I_{OUT} = 0 mA, V_{BAT} = 4.2 V, V_{USB} = 5 V, V_{DC_IN} = 3 V, EN = 3.4 V	Full		9.2	15		
I _{IN-USB}	Quiescent current	I_{OUT} = 0, V_{BAT} = 4.2V, V_{USB} = 5V, V_{DC_IN} = 5.5V, EN = 3.4 V	Full		0.7	2	μA	
	Operating current	$\begin{split} I_{OUT} &= 0 \text{ mA, } V_{BAT} = 4.2 \text{ V, } V_{USB} = 3 \text{ V,} \\ V_{DC_IN} &= 5 \text{ V, EN} = 3.4 \text{ V} \end{split}$	Full		9.2	15		
IIN-DC_IN	Quiescent current	I_{OUT} = 0, V_{BAT} = 4.2V, V_{USB} = 5.5V, V_{DC_IN} = 5V, EN = 3.4 V	Full		0.7	2	μA	
I _{IN-USB}	Hi-Voltage operating current	$\begin{split} I_{OUT} &= 0 \text{ mA, } V_{BAT} = 4.2 \text{ V, } V_{USB} = 12 \text{ V,} \\ V_{DC_IN} &= 5 \text{ V, } EN = 3.4 \text{ V} \end{split}$	Full		10.8	20	μA	
I _{IN-DC_IN}	Hi-Voltage operating current	$ I_{OUT} = 0 \text{ mA}, \text{ V}_{BAT} = 4.2 \text{ V}, \text{ V}_{USB} = 5 \text{ V}, \\ \text{V}_{DC_{-}IN} = 12 \text{ V}, \text{ EN} = 3.4 \text{ V} $	Full		10.8	20	μA	
			25°C		2.4	3.3		
		V _{IN} = 5.0 V, I _{OUT} = 10 mA	Full			3.5	Ω	
_	ON resistance (USB to		25°C		2.6	3.5	~	
R _{ON}	CAP, BAT to CAP, DC_IN to CAP)	V _{IN} = 4.2 V, I _{OUT} = 10 mA	Full			4	Ω	
			25°C	25°C 3.8		5		
		V _{IN} = 2.5 V, I _{OUT} = 10 mA	Full			6	Ω	
_	ON resistance (LDO		25°C		1.3	2.5	-	
R _{ONVOUT}	output to VOUT)	$V_{IN} = 4.2 \text{ V}, I_{OUT-VOUT} = 10 \text{ mA}$	Full			3.0	Ω	
R _{PD}	Output pull down resistance	$V_{IN} = 4.2 \text{ V}, V_{EN} = 0 \text{ V}, \text{ I(into VOUT)} = 10 \text{ mA}$	25°C		63.8	120	Ω	
I _{EN}	EN input leakage	V _{EN} = 1.6 V to 5.5 V or GND	Full			1	μA	
V _{DO-VOUT}	Dropout voltage VOUT	I _{OUT} = 10 mA	Full		0.11		V	
V _{DO-LOUT}	Dropout voltage LOUT	I _{OUT} = 10 mA ⁽⁵⁾⁽⁶⁾	Full		0.10		V	
V _{LOUT}	Always on LDO output	V_{IN} < 3.4 V, I_{OUT} = 10 mA, V_{EN} = 1.8 V	Full		V _{IN} – V _{DO-LOUT}		V	
2001	voltage (LOUT pin)	V_{IN} > 4 V, I_{OUT} = 10 mA, V_{EN} = 1.8 V	Full	3.42	3.6	3.78		
V _{VOUT}	Switched LDO output	V _{IN} < 3.4 V, I _{OUT} = 10 m A, V _{EN} = 1.8 V	Full		V _{IN} – V _{DO-VOUT}		V	
	voltage (VOUT pin)	V _{IN} > 4 V, I _{OUT} = 10 mA, V _{EN} = 1.8 V	Full	Full 3.39 3.5		3.75	-	
V _{CO}	Changeover voltage	V_{BAT} = 4.2 V, V_{USB} = 4.0 V rising to 4.4 V	Full		0.15		V	
	VBAT=4.2 V, V _{USB} = 4.0 V rising to 4.4 V,		25°C		18		110	
t _{co}	Changeover time	CAP = 0.01 µF, I _{OUT} = 10 mA	Full			50	μs	
t _{OFF}	VOUT off time	EN high to low, C(VOUT) = 1 μ F, VOUT load Full 33					μs	
t _{ON}	VOUT on time	EN low to high, C(VOUT) = open, VOUT load = 360Ω	Full		65		μs	

V_{IN} is defined as the highest voltage present on the BAT, USB and DC_IN pins. (1)

(2)

One of the voltage on BAT, USB and DC_IN must be > VIN (Min), others can be 0 V. V_{BAT} , V_{USB} and V_{DC_IN} refer to the voltages on BAT, USB and DC_IN respectively. OUT, IOUT-VOUT and IOUT-LOUT refer to the currents for the combined output current for VOUT and LOUT, the current on VOUT and the current on LOUT respectively. (3) TYP is 25°C, BAT = 4.2-V, USB = 0-V, DC_IN = 0-V. (4)


(5) Dropout voltage is the minimum input to output voltage differential needed to maintain regulation at a specified output current. In


dropout, the output voltage is equal to: $V_{IN} - V_{DROPOUT}$. Dropout voltage is measured at the VIN that causes the output to drop to 100mV below its nominal voltage. For VOUT, the voltage drop (6) across the output switch is included (10mA × R_{ONVOUT}).

TEXAS INSTRUMENTS

www.ti.com

PARAMETRIC MEASUREMENT INFORMATION

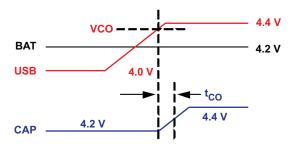
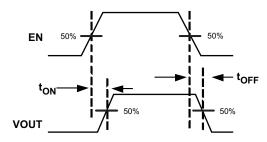



Figure 2. Switchover Timing

APPLICATION INFORMATION

POWER CHANGEOVER

The TPS22933 LDO is powered by the highest level input. When input voltages change, the TPS22933 may change which input powers the LDO. During initial power up, the input that reaches the highest value first will power the LDO. Once that decision is made, changing between input sources is based on VCO. When an input source becomes VCO over the input currently supplying power to the LDO, changeover will occur and the new, higher input will power the LDO.

TPS22933A EXAMPLE:

Initial power up:

 $DC_IN = 0V$; USB = 0V; EN = 0VBAT is applied at 4.2V LDO power comes from BAT LOUT = 3.6V; CAP = 4.2V; VOUT = 0V

USB power is connected at 5.0V, BAT remains 4.2V and DC_IN remains 0V LDO power is changed from BAT to USB in $t_{\rm CO}$

LOUT = 3.6V; CAP = 5.0V; VOUT = 0V

DC_IN power is connected at 5.0V, BAT remains 4.2V and USB remains 5V No change in LDO power

LOUT = 3.6V; CAP = 5.0V; VOUT = 0V

EN = VIH, BAT remains 4.2V, USB remains 5.0V and DC_IN remains 5V LOUT = 3.6V, CAP = 5.0V; VOUT = 3.6V

USB power is removed, BAT remains 4.2V and DC_IN remains 5.0V LDO power is changed from USB to DC_IN

LOUT = 3.6V; CAP = 5.0V; VOUT = 3.6V

DC_IN power is removed, BAT remains 4.2V and USB remains 0V: LDO power is changed from DC_IN to BAT

LOUT = 3.6V; CAP = 4.2V; VOUT = 3.6V

ON/OFF CONTROL

The EN pin controls the state of the VOUT switch and VOUT pull-down switch. EN has no control over LOUT. Asserting EN enables the VOUT switch and disables the Quick Output Discharge (QOD) switch. Deasserting EN disables the VOUT switch and enables the QOD switch. EN is active high and has a low threshold making it capable of interfacing with low voltage signals. The EN pin is compatible with standard GPIO Logic threshold and can be used with any microcontroller with 1.2-V, 1.8-V, 2.5-V or 3.3-V GPIOs.

LDO CAPACITOR (for CAP pin)

An optional capacitor on the CAP pin helps stabilize the integrated LDO. Care should be taken in capacitor sizing to reduce inrush currents. The voltage on the CAP pin will follow the highest input. Since the max input voltage is 12-V, the capacitor voltage rating must be higher than 12-V.

BOARD LAYOUT

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces for BAT, USB, DC_IN, LOUT, VOUT, and GND will help minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

Copyright © 2011, Texas Instruments Incorporated

APPLICATION EXAMPLES

Below are two diagrams of typical applications for the TPS22933A. In all cases, the unused power inputs can be left floating or tied to ground. The EN pin must not be left floating.

Figure 4 shows three power inputs multiplexed to source the LDO. The LDO always on output (LOUT) is tied to an MSP430. The MSP430 then determines when to enable the switched output (VOUT) by driving the EN pin.

Figure 5 shows three power inputs multiplexed to source only through the CAP pin. In this case, the LDO outputs are not used (EN is tied low). The highest of the inputs is chosen to drive the voltage at the CAP pin.

Note that these two applications are not mutually exclusive. An application could use the CAP pin as a power output and use one or both of the LDO outputs.

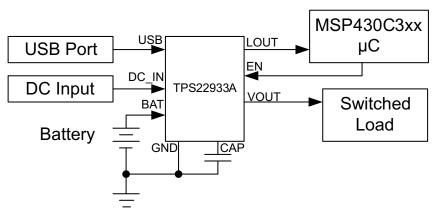
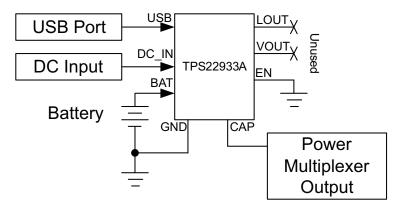
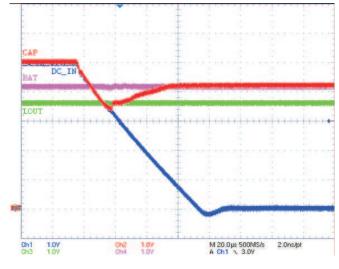
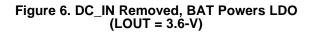
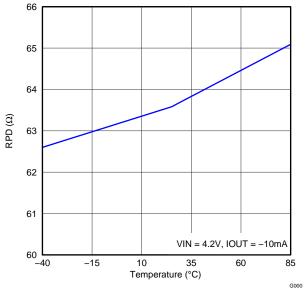


Figure 4. Application Example 1




Figure 5. Application Example 2

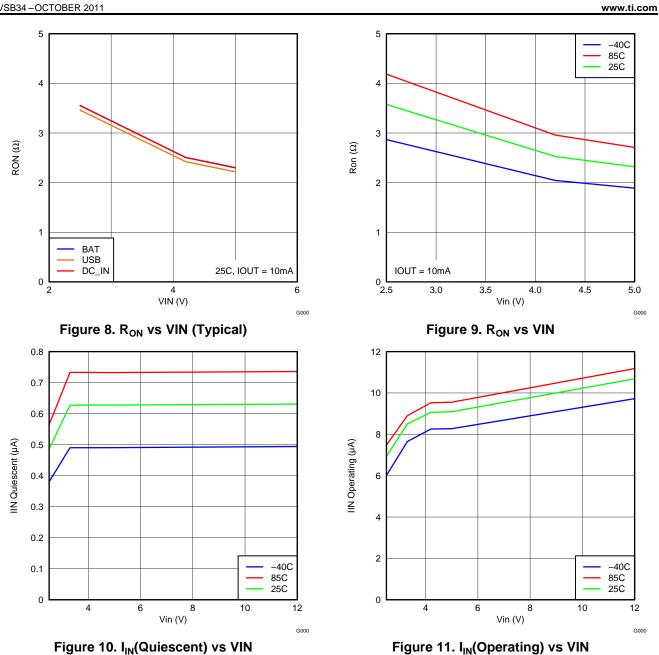
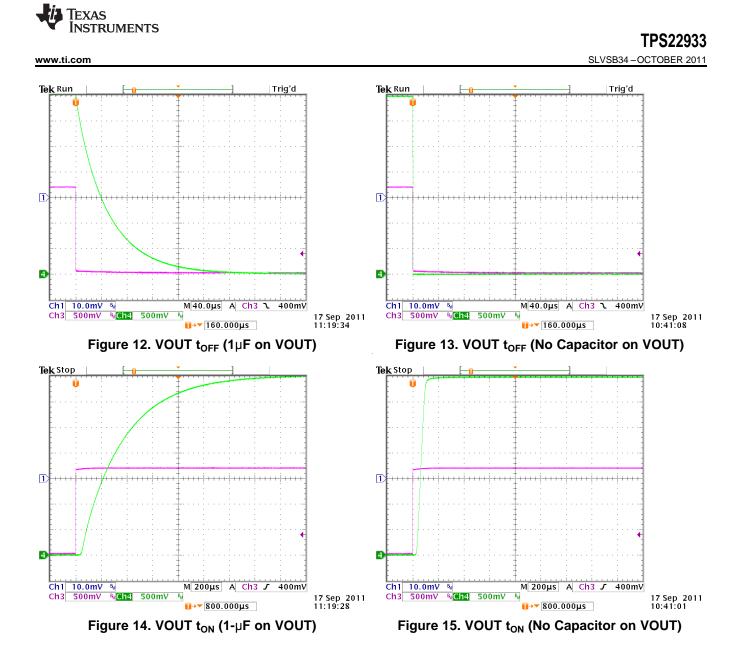
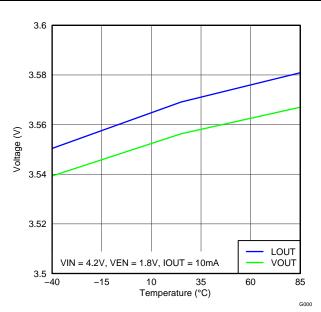


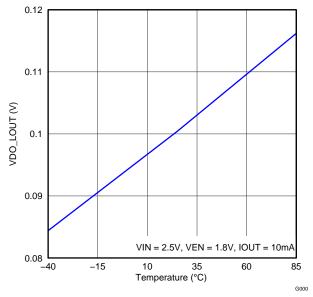

PERFORMANCE GRAPHS

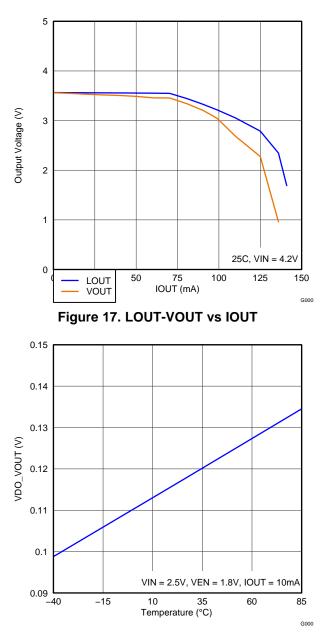
Туре	Description	Figure
Scope Plot	DC_IN to BAT switchover	Figure 6
Graph	RON versus VIN (BAT, USB, DC_IN) 25°C	Figure 7
Graph	RON versus VIN (Any input)	Figure 8
Graph	Quiescent Current versus Input Voltage (Any input)	Figure 9
Graph	Operating Current versus Input Voltage (Any Input)	Figure 10
Scope Plot	t _{OFF} (VIN = 4.2-V, C(VOUT) = 1uF, 25°C)	Figure 11
Scope Plot	t _{OFF} (VIN = 4.2-V, C(VOUT) = open, 25°C)	Figure 12
Scope Plot	t_{ON} (VIN = 4.2-V, C(VOUT) = 1uF, 25°C)	Figure 13
Scope Plot	t_{ON} (VIN = 4.2-V, C(VOUT) = open, 25°C)	Figure 14
Graph	LOUT and VOUT versus Temperature at VIN = 4.2-V	Figure 15
Graph	LOUT and VOUT versus IOUT (VIN = 4.2-V, Temp = 25°C)	Figure 16
Graph	LOUT Dropout Voltage versus Temperature (VIN = 2.5-V)	Figure 17
Graph	VOUT Dropout Voltage versus Temperature (VIN = 2.5-V)	Figure 18
Graph	Output Pull-down Resistance (R _{PD}) versus Temperature (10mA into VOUT)	Figure 19

Table 1. Performance Graphs and Plots

Texas **INSTRUMENTS**


Figure 11. I_{IN}(Operating) vs VIN


TPS22933 SLVSB34 – OCTOBER 2011

EXAS

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPS22933ARSER	ACTIVE	UQFN	RSE	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TPS22933ARSET	ACTIVE	UQFN	RSE	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

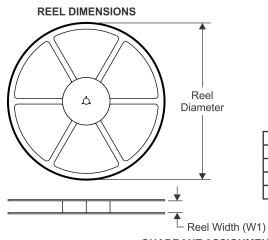
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

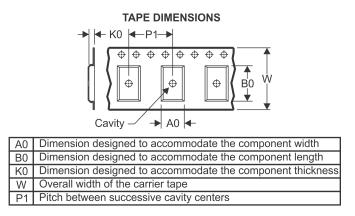
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

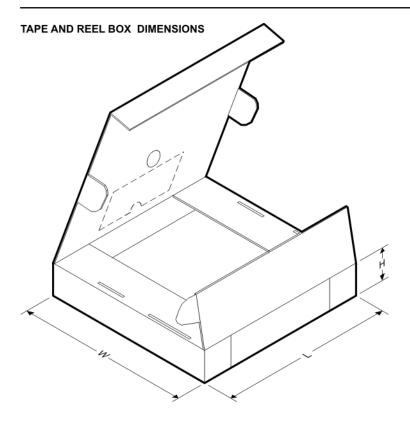

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

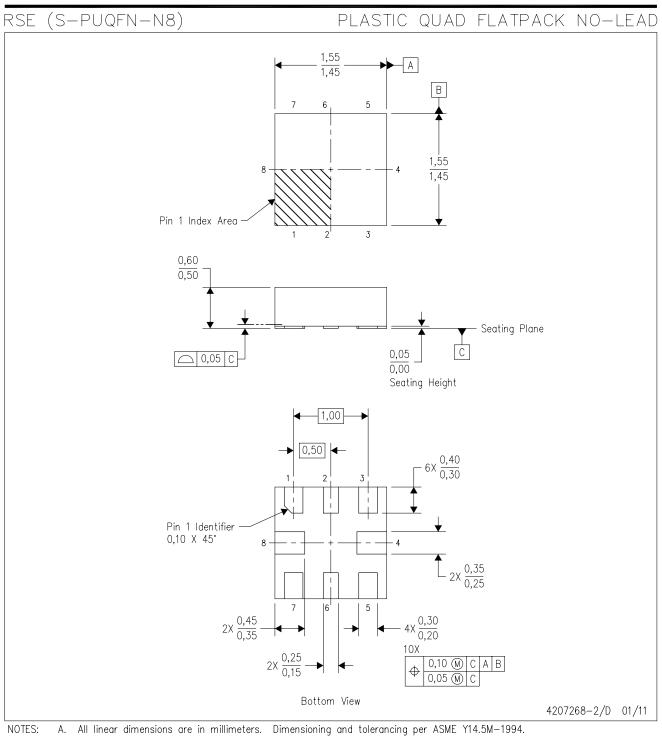
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*A	Il dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	TPS22933ARSER	UQFN	RSE	8	3000	180.0	8.4	1.6	1.6	0.66	4.0	8.0	Q2
	TPS22933ARSET	UQFN	RSE	8	250	180.0	8.4	1.6	1.6	0.66	4.0	8.0	Q2

TEXAS INSTRUMENTS

www.ti.com

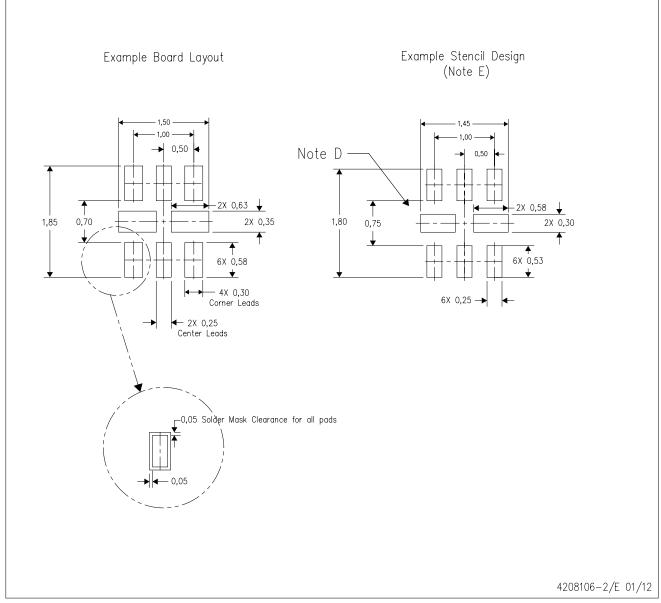
PACKAGE MATERIALS INFORMATION


4-Oct-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22933ARSER	UQFN	RSE	8	3000	202.0	201.0	28.0
TPS22933ARSET	UQFN	RSE	8	250	202.0	201.0	28.0

MECHANICAL DATA



B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) package configuration.
D. This package complies to JEDEC MO-288 variation UECD.

RSE (S-PUQFN-N8)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication $\mathsf{IPC-7351}$ is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated