# Overvoltage and Overcurrent Protection IC and Li+ Charger Front-End Protection IC With LDO Mode ## **FEATURES** - Input Overvoltage Protection - Accurate Battery Overvoltage Protection - Output Short-Circuit Protection - Soft-Start to Prevent Inrush Currents - Soft-Stop to Prevent Voltage Spikes - 30-V Maximum Input Voltage - Supports up to 1.7-A Load Current - Thermal Shutdown - Enable Function - Fault Status Indication - Small 2 mm x 2 mm 8-Pin SON Package # **APPLICATIONS** - Smart Phones, Mobile Phones - PDAs - MP3 Players - Low-Power Handheld Devices ### DESCRIPTION The bg2438x family are charger front-end integrated circuits designed to provide protection to Li-ion batteries from failures of the charging circuitry. The IC continuously monitors the input voltage and the battery voltage. The device operates like a linear regulator, maintaining a 5.5-V (bq24380) or 5-V (bq24381, bq24382) output with input voltages up to the Input overvoltage threshold. During input overvoltage conditions, the IC immediately turns off the internal pass FET disconnecting the charging circuitry from the damaging input source. Additionally, if the battery voltage rises to unsafe levels while charging, power is removed from the system. The IC checks for short-circuit or overload conditions at its output when turning the pass FET on, and if it finds unsafe conditions, it switches off, and then rechecks the conditions. Additionally, the IC also monitors its die temperature and switches off if it exceeds 140°C. When the IC is controlled by a processor, the IC provides status information about fault conditions to the host. # **APPLICATION SCHEMATIC** Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerPAD is a trademark of Texas Instruments. These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. ## **ORDERING INFORMATION** | DEVICE | V <sub>OVP</sub> | V <sub>O(REG)</sub> | PACKAGE <sup>(1)</sup> | MARKING | |---------|------------------|---------------------|------------------------|---------| | bq24380 | 6.3 V | 5.5 V | 2mm x 2mm SON | CFE | | bq24381 | 7.1 V | 5 V | 2mm x 2mm SON | CFW | | bq24382 | 10.5 V | 5 V | 2mm x 2mm SON | OBE | <sup>(1)</sup> For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com. # **ABSOLUTE MAXIMUM RATINGS**(1) over operating free-air temperature range (unless otherwise noted) | | | | VALUE | UNIT | |----------------------|-----------------------|---------------------------------------|------------|------| | | | IN (with respect to VSS) | -0.3 to 30 | V | | $V_{I}$ | Input voltage | OUT (with respect to VSS) | -0.3 to 12 | V | | | | FAULT, CE, VBAT (with respect to VSS) | -0.3 to 7 | V | | I <sub>OUT</sub> max | Output source current | OUT | 2 | Α | | | Output sink current | FAULT | 15 | mA | | TJ | Junction temperature | | -40 to 150 | °C | | T <sub>stg</sub> | Storage temperature | | -65 to 150 | °C | <sup>(1)</sup> Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to the network ground terminal unless otherwise noted. # **DISSIPATION RATINGS** | PACKAGE | $R_{ heta JC}$ | $R_{ hetaJA}$ | |---------|----------------|---------------| | DSG | 5°C/W | 75°C/W | # RECOMMENDED OPERATING CONDITIONS | | | MIN | MAX | UNIT | |---------|----------------------|-----|-----|------| | VI | IN voltage range | 3.3 | 30 | V | | Io | Current, OUT pin | | 1.7 | Α | | $T_{J}$ | Junction temperature | -40 | 125 | °C | # TYPICAL CHARACTERISTICS # NORMAL POWER-ON SHOWING SOFT-START (bq24380) t - Time - 2 ms/div Figure 1. # OVP RESPONSE for INPUT STEP (bq24380) Figure 3. # RECOVERY FROM OVP (bq24380) Figure 5. # **OVP at POWER-ON** t - Time - 2 ms/div Figure 2. # SLOW INPUT RAMPINTO OVP EVENT (bq24380) Figure 4. # POWER UP INTO SHORT CIRCUIT Figure 6. # **TYPICAL CHARACTERISTICS (continued)** # SOFT-STOP DURING OCP EVENT (bq24380) t - Time - 20 μs/div Figure 7. Figure 9. **BATTERY OVP EVENT (bq24380)** t - Time - 50 $\mu\text{s}/\text{div}$ Figure 8. # **DROPOUT VOLTAGE** vs FREE-AIR TEMPERATURE Figure 10. # **OVP THRESHOLD** vs FREE-AIR TEMPERATURE # **TYPICAL CHARACTERISTICS (continued)** # SUPPLY CURRENT vs INPUT VOLTAGE (bq24381) \_\_\_\_ Figure 17. Typical Application Circuit Figure 18. Timing Diagram ## **DETAILED FUNCTIONAL DESCRIPTION** The bq2438x is a highly integrated circuit designed to provide protection to Li-ion batteries from failures of the charging circuit and the input source. The IC continuously monitors the input voltage and the battery voltage. The device operates like a linear regulator, maintaining a 5.5-V (bq24380) or 5-V (bq24381, bq24382) output with input voltages up to the input overvoltage threshold ( $V_{\text{OVP}}$ ). If the input voltage exceeds $V_{\text{OVP}}$ , the IC shuts off the pass FET and disconnects the system from input power. Additionally, if the battery voltage rises above 4.35 V, the IC switches off the pass FET, removing the power from the system until the battery voltage falls to safe levels. The IC also monitors its die temperature and switches the pass FET off if it exceeds 140°C. The IC can be controlled by a processor, and also provides status information about fault conditions to the host. ### **POWER DOWN** The device remains in power-down mode when the input voltage at the IN pin is below the undervoltage threshold (UVLO) of 2.8 V. The FET connected between the IN and OUT pins is off, and the status output, FAULT, is set to HI-Z. ### POWER ON RESET The device resets when the input voltage at the IN pin exceeds the UVLO threshold. During power-on reset, the IC waits for duration $t_{\text{DGL}(\text{PGOOD})}$ for the input voltage to stabilize. If, after $t_{\text{DGL}(\text{PGOOD})}$ , the input voltage and battery voltage are within operation limits, the pass FET is turned ON. The IC has a soft-start feature to control the inrush current. The soft-start minimizes the ringing at the input due to the resonant circuit formed by the parasitic inductance of the adapter cable and the input bypass capacitor. During the soft-start time, $t_{\text{SStart}}$ , the current limit is stepped up in 8 equal steps every 625 $\mu$ s. Each step is 1/8 of the $t_{\text{O(SC)}}$ . After the soft-start sequence is over, the IC samples the load current. If the load current exceeds $t_{\text{O(SC)}}$ , the IC initiates short circuit protection. See the Startup Short-Circuit Protection section for details. If no overcurrent event is measured, the current monitoring circuitry is disabled for normal operation. In the event a short-circuit is detected at power-on, to prevent the input voltage from spiking up when the pass FET is switched off (due to the inductance of the input cable), The pass FET is turned off by gradually reducing its gate-drive, resulting in a *soft-stop* (t<sub>SStop</sub>). # **DETAILED FUNCTIONAL DESCRIPTION** The device continuously monitors the input voltage and the battery voltage as described in detail below: ### Input Overvoltage Protection The OUT output of the bq2438x operates similar to a linear regulator. While the input voltage is less than $V_{O(REG)}$ , and above the UVLO, the output voltage tracks the input voltage (less the drop caused by $R_{DS(on)}$ of the pass FET). When the input voltage is greater than $V_{O(REG)}$ (plus the $R_{DS(on)}$ drop) and less than $V_{OVP}$ , the output voltage is regulated to $V_{O(REG)}$ . $V_{O(REG)}$ is 5.5 V for the bq24380, and 5 V for the bq24381 and bq24382. If the input voltage is increased above $V_{OVP}$ , the internal pass FET is turned off, removing power from the charging circuitry connected to OUT. The FAULT output is then asserted low. When the input voltage drops below $V_{OVP} - V_{hys(OVP)}$ (but is still above UVLO), the pass FET is turned on after a deglitch time of $t_{REC(OVP)}$ . The deglitch time ensures that the input supply has stabilized. The *condition* 5 in Figure 18 illustrates an input overvoltage event. ### **Battery Overvoltage Protection** The battery overvoltage threshold $BV_{OVP}$ is internally set to 4.35 V for the bq2438x. Condition 3 in Figure 18 illustrates a battery overvoltage event. If the battery voltage exceeds the $BV_{OVP}$ threshold for longer than $t_{DGL(BVovp)}$ , the pass FET is turned off (using soft-stop), and $\overline{FAULT}$ is asserted low. The pass FET is turned on (using the soft-start sequence) once the battery voltage drops to $BV_{OVP} - V_{hys(BVovp)}$ . ### **Thermal Protection** If the junction temperature of the device exceeds $T_{J(OFF)}$ , the pass FET is turned off, and the $\overline{FAULT}$ output is asserted low. The FET is turned on when the junction temperature falls below $T_{J(OFF)} - T_{J(OFF-HYS)}$ . **Enable Function** **Fault Indication** ### APPLICATION INFORMATION # Selection of R<sub>(BAT)</sub> It is recommended that the battery not be tied directly to the VBAT pin of the device, as under some failure modes of the IC, the voltage at the IN pin may appear on the VBAT pin. This voltage can be as high as 30 V, and applying 30 V to the battery may cause failure of the device and can be hazardous. Connecting the VBAT pin through $R_{(BAT)}$ prevents a large current from flowing into the battery in the event of failure. For safety, $R_{(BAT)}$ must have a high value. The problem with a large $R_{(BAT)}$ is that the voltage drops across the resistor because of the VBAT bias current, $I_{(VBAT)}$ , which causes an error in the $BV_{OVP}$ threshold. This error is over and above the tolerance on the nominal 4.35-V $BV_{OVP}$ threshold. Choosing $R_{(BAT)}$ in the range of 100 k to 470 k is a good compromise. If the IC fails with $R_{(BAT)}$ equal to 100 k , the maximum current flowing into the battery would be $(30 \text{ V} - 3 \text{ V}) \div 100 \text{ k} = 246 \,\mu\text{A}$ , which is low enough to be absorbed by the bias currents of the system components. $R_{(BAT)}$ equal to 100 k results in a worst-case voltage drop of $R_{(BAT)} \times I_{(VBAT)} \approx 1 \,\text{mV}$ . This is negligible compared to the internal tolerance of 50 mV on the $BV_{OVP}$ threshold. If the Bat-OVP function is not required, the VBAT pin must be connected to VSS. # Selection of R<sub>(CE)</sub> The $\overline{\text{CE}}$ pin can be used to enable and disable the IC. If host control is not required, the $\overline{\text{CE}}$ pin can be tied to ground or left unconnected, permanently enabling the device. In applications where external control is required, the $\overline{\text{CE}}$ pin can be controlled by a host processor. As with the VBAT pin (see previous discussion), the $\overline{\text{CE}}$ pin must be connected to the host GPIO pin through as large a resistor as possible. The limitation on the resistor value is that the minimum $V_{OH}$ of the host GPIO pin less the drop across the resistor must be greater than $V_{IH}$ of the bq2430x $\overline{\text{CE}}$ pin. The drop across the resistor is given by $R_{(CE)} \times I_{IH}$ . # **Selection of Input and Output Bypass Capacitors** The input capacitor $C_{IN}$ in Figure 17 is for decoupling and serves an important purpose. Whenever a step change downwards in the system load current occurs, the inductance of the input cable causes the input voltage to spike up. $C_{IN}$ prevents the input voltage from overshooting to dangerous levels. It is recommended that a ceramic capacitor of at least 1 $\mu$ F be used at the input of the device. It must be located in close proximity to the IN pin. $C_{\text{OUT}}$ in Figure 17 is also important. During an overvoltage transient, this capacitance limits the output overshoot until the power FET is turned off by the overvoltage protection circuitry. $C_{\text{OUT}}$ must be a ceramic capacitor of at least 1 $\mu$ F, located close to the OUT pin. $C_{\text{OUT}}$ also serves as the input decoupling capacitor for the charging circuit downstream of the protection IC. # **PCB Layout Guidelines** - 1. This device is a protection device and is meant to protect down-stream circuitry from hazardous voltages. Potentially, high voltages may be applied to this IC. It has to be ensured that the edge-to-edge clearances of PCB traces satisfy the design rules for the maximum voltages expected to be seen in the system. - 2. The device uses SON packages with a PowerPAD™. For good thermal performance, the PowerPAD must be thermally coupled with the PCB ground plane. In most applications, this requires a copper pad directly under the IC. This copper pad should be connected to the ground plane with an array of thermal vias. - 3. $C_{IN}$ and $C_{OUT}$ should be located close to the IC. Other components like $R_{(BAT)}$ should also be located close to the IC. # **PACKAGING INFORMATION** | Orderable Device | Status | |------------------|--------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | # TAPE AND REEL INFORMATION | Device | Package<br>Type | Package<br>Drawing | | SPQ | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant | |-------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | BQ24380DSGR | WSON | DSG | 8 | 3000 | 179.0 | 8.4 | 2.2 | 2.2 | 1.2 | 4.0 | 8.0 | Q2 | | BQ24380DSGT | WSON | DSG | 8 | 250 | 179.0 | 8.4 | 2.2 | 2.2 | 1.2 | 4.0 | 8.0 | Q2 | | BQ24381DSGR | WSON | DSG | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | # \*All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-------------|--------------|-----------------|------------|------|-------------|------------|-------------| | BQ24380DSGR | WSON | DSG | 8 | 3000 | 195.0 | 200.0 | 45.0 | | BQ24380DSGT | WSON | DSG | 8 | 250 | 195.0 | | | | | | • | <u>-</u> ' | • | • | | | | | | | | | | | | | | | | | | | | | ### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |-----------------------------|------------------------|------------------------------|-----------------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DLP® Products | www.dlp.com | Communications and Telecom | www.ti.com/communications | | DSP | <u>dsp.ti.com</u> | Computers and<br>Peripherals | www.ti.com/computers | | Clocks and Timers | www.ti.com/clocks | Consumer Electronics | www.ti.com/consumer-apps | | Interface | interface.ti.com | Energy | www.ti.com/energy | | Logic | logic.ti.com | Industrial | www.ti.com/industrial | | Power Mgmt | power.ti.com | Medical | www.ti.com/medical | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | RFID | www.ti-rfid.com | Space, Avionics & Defense | www.ti.com/space-avionics-defense | | RF/IF and ZigBee® Solutions | www.ti.com/lprf | Video and Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless-apps |