
#### ■ Features

- Input voltage: 3.6V to 23V.
  Output voltage: 0.8V to V<sub>CC</sub>.
- Duty ratio: 0% to 100% PWM control
- Oscillation frequency: 300KHz typ.
- Soft-start, Current limit, Enable function
- Thermal Shutdown function
- Built-in internal SW P-channel MOS
- SOP-16L Pb-Free Package.

#### ■ Applications

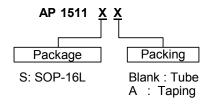
- -Microprocessor core supply
- -Networking power supply
- -LCD MNT, TV power supply
- -Telecom power supply

## ■ Pin Assignments

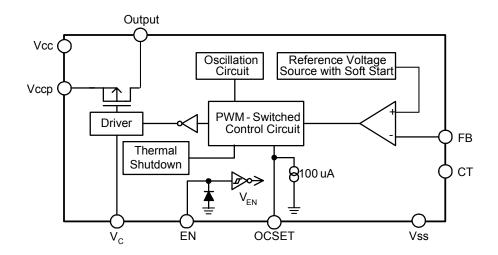


#### **■** General Description

AP1511 consists of step-down switching regulator with PWM control. These devices include a reference voltage source, oscillation circuit, error amplifier, internal PMOS and etc.


AP1511 provides low-ripple power, high efficiency, and excellent transient characteristics. The PWM control circuit is able to vary the duty ratio linearly from 0 up to 100%. This converter also contains an error amplifier circuit as well as a soft-start circuit that prevents overshoot at startup. An enable function, an over current protect function and a short circuit protect function are built inside, and when OCP or SCP happens, the operation frequency will be reduced from 300KHz to 30KHz. Also, an internal compensation block is built in to minimum external component count.

With the addition of an internal P-channel Power MOS, a coil, capacitors, and a diode connected externally, these ICs can function as step-down switching regulators. They serve as ideal power supply units for portable devices when coupled with the SOP-16L mini-package, providing such outstanding features as low current consumption. Since this converter can accommodate an input voltage up to 23V, it is also suitable for the operation via an AC adapter.


#### ■ Pin Descriptions

| Pin<br>Name | Pin<br>No. | Description                                         |  |  |
|-------------|------------|-----------------------------------------------------|--|--|
| GND         | 1          | GND pin                                             |  |  |
| GND         | 2          | GND pin                                             |  |  |
| FB          | 3          | Feedback pin                                        |  |  |
| EN          | 4          | H: Normal operation L: Step-down operation stopped  |  |  |
| OCSET       | 5          | Add an external resistor to set max output current. |  |  |
| Vcc         | 6          | Signal Vcc                                          |  |  |
| Output      | 7          | Switch output pin                                   |  |  |
| Output      | 8          | Switch output pin                                   |  |  |
| Output      | 9          | Switch output pin                                   |  |  |
| Output      | 10         | Switch output pin                                   |  |  |
| PVcc        | 11         | Power Vcc                                           |  |  |
| Vc          | 12         | Voltage clamp pin                                   |  |  |
| NC          | 13         | Not connected                                       |  |  |
| NC          | 14         | Not connected                                       |  |  |
| GND         | 15         | GND pin                                             |  |  |
| GND         | 16         | GND pin                                             |  |  |

#### Ordering Information



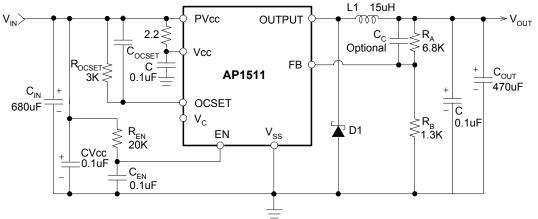
### **■** Block Diagram



## ■ Absolute Maximum Ratings

| Symbol              | Parameter                    | Rating                                        | Unit |
|---------------------|------------------------------|-----------------------------------------------|------|
| V <sub>CC</sub>     | Vcc Pin Voltage              | V <sub>SS</sub> - 0.3 to V <sub>SS</sub> + 25 | V    |
| $V_{FB}$            | V <sub>OUT</sub> Pin Voltage | $V_{SS}$ - 0.3 to $V_{CC}$                    | V    |
| $V_{EN}$            | EN Pin Voltage               | $V_{SS}$ - 0.3 to $V_{CC}$ + 0.3              | V    |
| V <sub>OUTPUT</sub> | Switch Pin Voltage           | $V_{SS}$ - 0.3 to $V_{IN}$ + 0.3              | V    |
| $P_{D}$             | Power Dissipation (Note)     | Internally limited                            | mW   |
| T <sub>OPR</sub>    | Operating Temperature Range  | -20 to +125                                   | °C   |
| T <sub>STG</sub>    | Storage Temperature Range    | -40 to +150                                   | °C   |

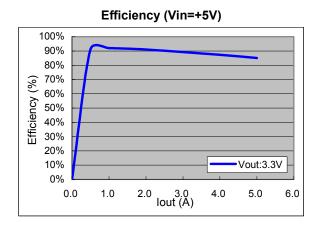
Caution: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

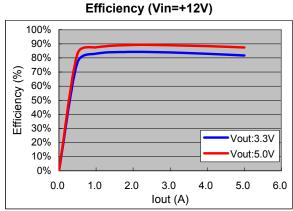

**Note:** Due to the IC and SBD and Inductor were hot in high current, if you need to reduce the operation temperature that you must increase the component space or thermal dissipation space.

# PWM Control 5A Step-Down Converter

#### ■ Electrical Characteristics (V<sub>IN</sub> = 12V, T<sub>a</sub>=25°C, unless otherwise specified)

| Symbol                     | Parameter                                           | Conditions                                     | Min.  | Тур. | Max.  | Unit |  |
|----------------------------|-----------------------------------------------------|------------------------------------------------|-------|------|-------|------|--|
| V <sub>IN</sub>            | Input Voltage                                       |                                                | 3.6   | -    | 23    | V    |  |
| $V_{FB}$                   | Feedback Voltage                                    |                                                | 0.784 | 0.8  | 0.816 | V    |  |
| I <sub>FB</sub>            | Feedback Bias Current                               | I <sub>OUT</sub> =0.1A                         | -     | 0.1  | 0.5   | μΑ   |  |
| I <sub>SW</sub>            | Switch Current                                      |                                                | 5.5   | ı    | -     | Α    |  |
| I <sub>SSS</sub>           | Current Consumption During Power Off                | V <sub>EN</sub> =0V                            | ı     | 10   | ı     | μA   |  |
| $\Delta V_{OUT}$ $N_{OUT}$ | Line Regulation                                     | V <sub>IN</sub> = 3.6V~23V                     | -     | 1    | 2     | %    |  |
| ۸۱/ ـ                      | Load Regulation                                     | I <sub>OUT</sub> = 0 to 5A                     | -     | 0.5  | 1     | %    |  |
| f <sub>OSC</sub>           | Oscillation Frequency                               | Measure waveform at SW pin                     | 240   | 300  | 360   | KHz  |  |
| f <sub>OSC1</sub>          | Frequency of Current Limit or Short Circuit Protect | Measure waveform at SW pin                     | 10    | -    | -     | KHz  |  |
| $V_{SH}$                   | Power-Off Pin Input Voltage                         | Evaluate oscillation at SW pin                 | 2.0   | ı    | -     | V    |  |
| $V_{SL}$                   | Fower-On Fin Input voltage                          | Evaluate oscillation stop at SW pin            | 1     | ı    | 8.0   | V    |  |
| $I_{SH}$                   | Power-Off Pin Input Leakage                         |                                                | -     | 20   | -     | μΑ   |  |
| $I_{SL}$                   | Current                                             |                                                | -     | -10  | -     | μΑ   |  |
| I <sub>OCSET</sub>         | OCSET Pin Bias Current                              |                                                | 75    | 90   | 105   | μΑ   |  |
| $T_{SS}$                   | Soft-Start Time                                     |                                                | 0.3   | 2    | 5     | ms   |  |
|                            | Internal MOSFET Rdson                               | $V_{IN}$ =5V, $V_{FB}$ =0V                     | -     | 70   | 100   | mΩ   |  |
| R <sub>DSON</sub>          | Internal MOSI ET Ruson                              | $V_{IN}$ =12V, $V_{FB}$ =0V                    | -     | 50   | 70    |      |  |
| EFFI                       | Efficiency                                          | $V_{IN} = 12V, V_{OUT} = 5V$<br>$I_{OUT} = 5A$ | -     | 90   | -     | %    |  |
| $\theta_{JA}$              | Thermal Resistance<br>Junction-to-Ambient           |                                                | - 1   | 50   | -     | °C/W |  |


# ■ Typical Application Circuit




Note:  $V_{OUT} = V_{REF} x (1+R_A/R_B)$  $R_B = 1 K \sim 10 K \text{ ohm}$ 

| V <sub>IN</sub> =12V, I <sub>MAX</sub> =5A |      |      |      |  |  |
|--------------------------------------------|------|------|------|--|--|
| V <sub>out</sub>                           | 2.5V | 3.3V | 5V   |  |  |
| L1 Value                                   | 10uH | 12uH | 15uH |  |  |

## **■** Typical Performance Characteristics

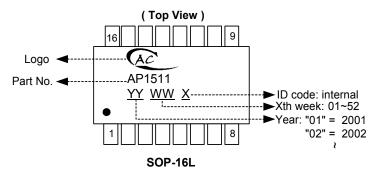




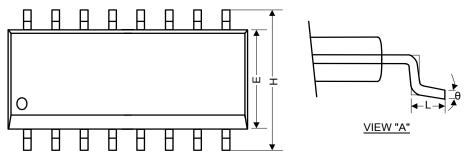
#### **■** Test Circuit

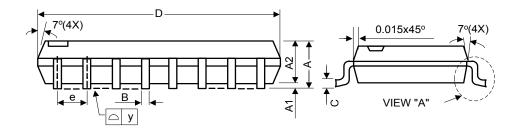


#### **■** Function Description


#### **PWM Control**

The AP1511 consists of DC/DC converters that employ a pulse-width modulation (PWM) system. In converters of the AP1511, the pulse width varies in a range from 0 to 100%, according to the load current. The ripple voltage produced by the


switching can easily be removed through a filter because the switching frequency remains constant. Therefore, these converters provide a low-ripple power over broad ranges of input voltage and load current.


# PWM Control 5A Step-Down Converter

# ■ Marking Information



# ■ Package Information Package Type: SOP-16L





| Symbol   | Dimensions In Millimeters |      |       | Dimensions In Inches |       |        |
|----------|---------------------------|------|-------|----------------------|-------|--------|
| Syllibol | Min.                      | Nom. | Max.  | Min.                 | Nom.  | Max.   |
| Α        | 1.40                      | 1.60 | 1.75  | 0.055                | 0.063 | 0.069  |
| A1       | 0.10                      | ı    | 0.25  | 0.040                | -     | 0.010  |
| A2       | 1.30                      | 1.45 | 1.50  | 0.051                | 0.057 | 0.059  |
| В        | 0.33                      | 0.41 | 0.51  | 0.013                | 0.016 | 0.020  |
| С        | 0.19                      | 0.20 | 0.25  | 0.0075               | 0.008 | 0.0098 |
| D        | 9.80                      | 9.90 | 10.00 | 0.386                | 0.390 | 0.394  |
| Е        | 3.80                      | 3.90 | 4.00  | 0.150                | 0.154 | 0.157  |
| е        | ı                         | 1.27 | ı     | -                    | 0.050 | -      |
| Η        | 5.80                      | 6.00 | 6.20  | 0.228                | 0.236 | 0.244  |
| L        | 0.38                      | 0.71 | 1.27  | 0.015                | 0.028 | 0.050  |
| θ        | 0                         | -    | 8     | 0                    | -     | 8      |