

NiCd/NiMH Fast-Charge Management ICs

Features

- ➤ Fast charge of nickel cadmium or nickel-metal hydride batteries
- ➤ Direct LED output displays charge status
- ➤ Fast-charge termination by rate of rise of temperature, maximum voltage, maximum temperature, and maximum time
- ➤ Internal band-gap voltage reference
- Optional top-off charge (bq2002T only)
- ➤ Selectable pulse-trickle charge rates (bq2002T only)
- ➤ Low-power mode
- ➤ 8-pin 300-mil DIP or 150-mil SOIC

General Description

The bq2002D/T Fast-Charge IC are low-cost CMOS battery-charge controllers able to provide reliable charge termination for both NiCd and NiMH battery applications. Controlling a current-limited or constant-current supply allows the bq2002D/T to be the basis for a cost-effective stand-alone or system-integrated charger. The bq2002D/T integrates fast charge with optional top-off and pulsed-trickle control in a single IC for charging one or more NiCd or NiMH battery cells.

Fast charge is initiated on application of the charging supply or battery replacement. For safety, fast charge is inhibited if the battery temperature and voltage are outside configured limits

Fast charge is terminated by any of the following:

- Rate of temperature rise
- Maximum voltage
- Maximum temperature
- Maximum time

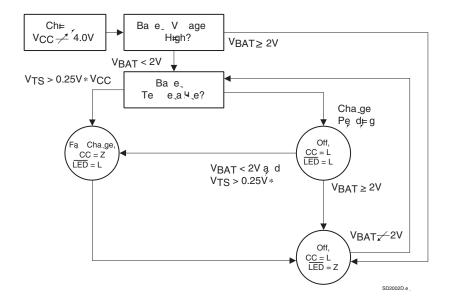
After fast charge, the bq2002T optionally tops-off and pulse-trickles the battery per the pre-configured limits. Fast charge may be inhibited using the INH pin. The bq2002D/T may be placed in low-standby-power mode to reduce system power consumption.

Pin Connections

Pin Names

TM	Timer mode select input	TS	Temperature sense input
LED	Charging status output	V_{CC}	Supply voltage input
BAT	Battery voltage input	INH	Charge inhibit input
V_{SS}	System ground	CC	Charge control output

bq2002D/T Selection Guide


Part No.	TCO	HTF	LTF	Fast Charge	Time-Out	Top-Off	Maintenance
				C/4	440 min	None	None
bq2002D	0.225 * V _{CC}	0.25 * V _{CC}	None	1C	110 min	None	None
				2C	55 min	None	None
			0.4 * V _{CC}	C/4	320 min	C/64	C/256
bq2002T	0.225 * V _{CC}	0.25 * V _{CC}		1C	80 min	C/16	C/256
-				2C	40 min	None	C/128

Pin Descriptions

TM Timer mode input

A three-level input that controls the settings for the fast charge safety timer, voltage termination mode, top-off, pulse-trickle, and voltage hold-off time.

 $\overline{\text{LED}}$

Note: This resistor-divider network input impedance to end-to-end should be at least $200k\Omega$ and less than $1~M\Omega$.

A ground-referenced negative temperature coefficient thermistor placed in proximity to the battery may be used as a low-cost temperature-to-voltage transducer. The temperature sense voltage input at TS is developed using a resistor-thermistor network between V_{CC} and V_{SS} . See Figure 1.

Starting A Charge Cycle

Either of two events starts a charge cycle (see Figure 5):

- 1. Application of power to $\ensuremath{V_{CC}}$ or
- 2. Voltage at the BAT pin falling through the maximum cell voltage where

$$V_{MCV}=2V~\pm 5\%$$

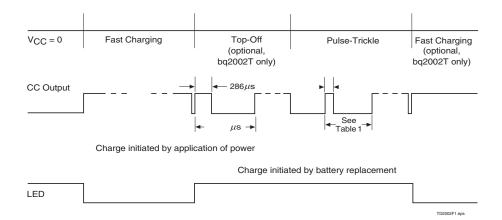
If the battery is within the configured temperature and voltage limits, the IC begins fast charge. The valid battery voltage range is $V_{BAT} < V_{MCV}$. The valid temperature range is $V_{HTF} < V_{TS} < V_{LTF}$ for the bq2002T and $V_{HTF} < V_{TS}$ for the bq2002D where

$$V_{LTF} = 0.4 * V_{CC} \pm 5\%$$

 $V_{HTF} = 0.25 * V_{CC} \pm 5\%$ (bq2002T only)

If the battery voltage or temperature is outside of these limits, the IC pulse-trickle charges until the temperature falls within the allowed fast charge range or a new charge cycle is started.

Fast charge continues until termination by one or more of the four possible termination conditions:


- Rate of temperature rise
- Maximum voltage
- Maximum temperature
- Maximum time

T/ t Termination

The bq2002D/T samples at the voltage at the TS pin every 19s and compares it to the value measured three samples earlier. If the voltage has fallen 25.6mV or more, fast charge is terminated. The $\Delta T/\Delta t$ termination test is valid only when $V_{TCO} < V_{TS} < V_{LTF}$ for the bq2002T and $V_{TCO} < V_{TS}$ for the bq2002D.

Temperature Sampling

A sample is taken by averaging together 16 measurements taken 570µs apart. The resulting sample period (18.18ms) filters out harmonics around 55Hz. This tech-

nique minimizes the effect of any AC line ripple that may feed through the power supply from either 50Hz or 60Hz AC sources. Tolerance on all timing is $\pm 20\%$.

Maximum Voltage, Temperature, and Time

Any time the voltage on the BAT pin exceeds the maximum cell voltage, V_{MCV} , fast charge or optional top-off charge is terminated.

Maximum temperature termination occurs anytime the voltage on the TS pin falls below the temperature cut-off threshold $V_{TCO}\,where$

$$V_{TCO} = 0.225*V_{CC}\pm5\%$$

Maximum charge time is configured using the TM pin. Time settings are available for corresponding charge rates of C/4, 1C, and 2C. Maximum time-out termination is enforced on the fast-charge phase, then reset, and

Table 1. Fast-Charge Safety Time/Top-Off Table

Part No.	Corresponding Fast-Charge Rate	ТМ	Typical Fast-Charge and Top-Off Time Limits (minutes)	Top-Off Rate	Pulse- Trickle Rate	Pulse- Trickle Period (ms)	
	C/4	Mid	440	None	None	None	
bq2002D	1C	Low	110	None	None	None	
	2C	High	55	None	None	None	
	C/4	Mid	320	C/64	C/256	18.3	
bq2002T	1C	Low	80	C/16	C/256	73.1	
	2C	High	40	None	C/128	73.1	

Notes: Typical conditions = 25°C, $V_{CC} = 5.0V$

 $Mid = 0.5 * V_{CC} \pm 0.5V$

Tolerance on all timing is $\pm 20\%$

Top-off Charge—bq2002T Only

An optional top-off charge phase may be selected to follow fast charge termination for 1C and C/4 rates. This phase may be necessary on NiMH or other battery chemistries that have a tendency to terminate charge prior to reaching full capacity. With top-off enabled, charging continues at a reduced rate after fast-charge termination for a period of time selected by the TM pin. (See Table 1.) During top-off, the CC pin is modulated at a duty cycle of 286 μ s active for every 4290 μ s inactive. This modulation results in an average rate 1/16th that of the fast charge rate. Maxi-

Absolute Maximum Ratings

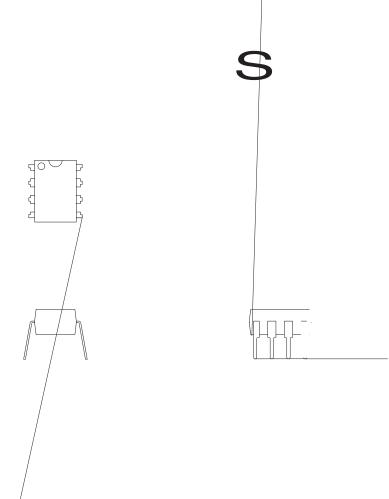
Symbol	Parameter	Minimum	Maximum	Unit	Notes
V_{CC}	V_{CC} relative to V_{SS}	-0.3	+7.0	V	
V					

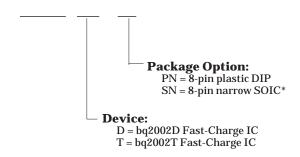
bq2002D/T

Recommended DC Operating Conditions (TA = 0 to 70°C)

Symbol	Condition	Minimum	Typical	Maximum	Unit	Notes
V _{CC}	Supply voltage	4.0	5.0	6.0	V	
V _{BAT}	Battery input	0	-	V_{CC}	V	
V _{TS}	Thermistor input	0.5	-	$V_{\rm CC}$	V	$V_{TS} < 0.5V$ prohibited
* 7	Logic input high	0.5	-	-	V	INH
V_{IH}	Logic input high	V _{CC} - 0.5	-	-	V	TM
V _{IM}	Logic input mid	$\frac{\mathrm{V_{CC}}}{2}$ - 0.5	-	$\frac{V_{CC}}{2} + 0.5$	V	TM
3.7	Logic input low	-	-	0.1	V	INH
V_{IL}	Logic input low	-	-	0.5	V	TM
Vol	Logic output low	-	-	0.8	V	TED, CC, I _{OL} = 10mA
V _{PD}	Power down	V _{CC} - 1.5	-	V _{CC} - 0.5	V	$\begin{aligned} &V_{BAT}\!\geq\!V_{PD}\ max.\ powers\\ &down\ bq2002D/T;\\ &V_{BAT}< V_{PD}\ min.\ =\\ &normal\ operation. \end{aligned}$
I_{CC}	Supply current	-	-	500	μΑ	Outputs unloaded, $V_{CC} = 5.1V$
I_{SB}	Standby current	-	-	1	μΑ	$V_{CC} = 5.1V$, $V_{BAT} = V_{PD}$
I _{OL}	TED, CC sink	10	-	-	mA	$@V_{OL} = V_{SS} + 0.8V$
I_L	Input leakage	-	-	±1	μА	INH, CC, V = V _{SS} to V _{CC}
I _{OZ}	Output leakage in high-Z state	-5	-	-	μА	LED, CC

Note: All voltages relative to V_{SS} .


Impedance


Symbol	Parameter	Minimum	Typical	Maximum	Unit
R _{BAT}	Battery input impedance	50	-	-	MΩ
R _{TS}	TS input impedance	50	-	-	ΜΩ

Timing (TA = 0 to +70°C; $VCC\pm10\%$)

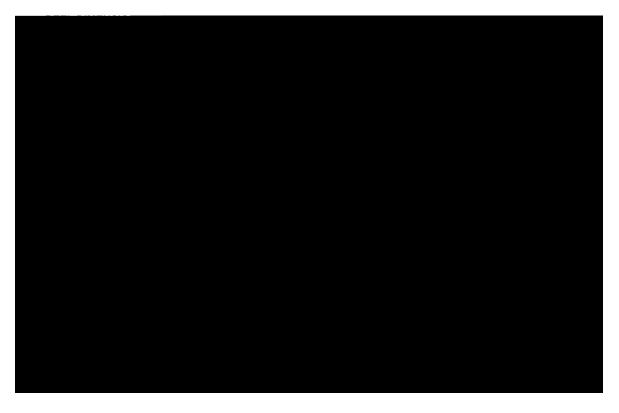
S	Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
\mathbf{d}_{F}	CV	Time-base variation	-20	-	20	%	

Note: Typical is at $T_A = 25$ °C, $V_{CC} = 5.0$ V.

bq2002D/T

Data Sheet Revision History

Change No.	Page No.	Description	Nature of Change
1	3	Was: Table 1 gave the bq2002D/T Operational Summary. Is: Figure 2 gives the bq2002D/T Operational Summary.	Changed table to figure.
1	5	Added top-off values.	Added column and values.
2	All	Revised and expanded this data sheet	
3	All	Revised and included bq2002D	Addition of device
4		Specified package information for the bq2002D	
5	1, 5	Corrected transposed rows in Selection Guide Table and made Table 1 consistent with Selection Guide	
6	4	Temperature Sampling — From 16 measurements taken 57us apart To: 16 measurements taken 570us apart.	

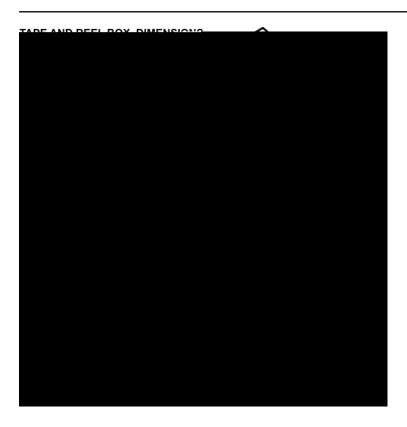

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
BQ2002DSN	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
BQ2002DSNG4	ACTIVE	SOIC	D		-			

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Apr-2009

TAPE AND REEL INFORMATION



*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ2002DSNTR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
BQ2002TSNTR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Apr-2009

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ2002DSNTR	SOIC	D	8	2500	340.5	338.1	20.6
BQ2002TSNTR	SOIC	D	8	2500	340.5	338.1	20.6

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and