C3D06060G-Silicon Carbide Schottky Diode Z-REC ${ }^{\text {tm }}$ Rectifier

Features

- 600-Volt Schottky Rectifier
- Zero Reverse Recovery Current
- Zero Forward Recovery Voltage
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Switching
- Positive Temperature Coefficient on V_{F}

Package

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{R R M}}=600 \mathrm{~V} \\
& \mathbf{I}_{\mathbf{F}}=6 \mathrm{~A} \\
& \quad\left(\mathbf{T}_{\mathrm{C}}<155^{\circ} \mathrm{C}\right) \\
& \mathbf{Q}_{\mathbf{c}} \quad=16 \mathrm{nC}
\end{aligned}
$$

TO-263-2

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

Applications

- Switch Mode Power Supplies
- Power Factor Correction
- Typical PFC $\mathrm{P}_{\text {out }}$: 600W-1200W

Part Number	Package	Marking
C3D06060G	TO-263-2	C3D06060

- Motor Drives
- Typical Power : 2HP-3HP

Maximum Ratings

Symbol	Parameter	Value	Unit	Test Conditions	Note
$\mathrm{V}_{\text {RRM }}$	Repetitive Peak Reverse Voltage	600	V		
$\mathrm{V}_{\text {RSM }}$	Surge Peak Reverse Voltage	600	V		
V_{DC}	DC Blocking Voltage	600	V		
I_{F}	Continuous Forward Current	6 8	A	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}<155^{\circ}{ }^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}<145^{\circ} \mathrm{C} \end{aligned}$	See Fig. 3
$\mathrm{I}_{\text {FRM }}$	Repetitive Peak Forward Surge Current	$\begin{aligned} & 41 \\ & 27 \end{aligned}$	A	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave, $\mathrm{D}=0.3$ $T_{c}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Wave, $\mathrm{D}=0.3$	
$\mathrm{I}_{\text {FSM }}$	Non-Repetitive Peak Forward Surge Current	$\begin{aligned} & 70 \\ & 55 \end{aligned}$	A	$\begin{array}{\|l} \hline \mathrm{T}_{\mathrm{C}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{mS} \text {, Half Sine Wave, } \mathrm{D}=0.3 \\ \mathrm{~T}_{\mathrm{C}}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{mS} \text {, Half Sine Wave, } \mathrm{D}=0.3 \\ \hline \end{array}$	
$\mathrm{I}_{\text {FSM }}$	Non-Repetitive Peak Forward Surge Current	200	A	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$, Pulse	
$\mathrm{P}_{\text {tot }}$	Power Dissipation	$\begin{aligned} & 91 \\ & 39 \end{aligned}$	W	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=110^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Operating Junction and Storage Temperature	$\begin{aligned} & -55 \text { to } \\ & +175 \end{aligned}$	${ }^{\circ} \mathrm{C}$		
	TO-220 Mounting Torque	$\begin{gathered} 1 \\ 8.8 \end{gathered}$	$\underset{\mathrm{lbf}-\mathrm{in}}{\mathrm{Nm}}$	M3 Screw 6-32 Screw	

Electrical Characteristics

Symbol	Parameter	Typ.	Max.	Unit	Test Conditions	Note
V_{F}	Forward Voltage	$\begin{aligned} & 1.6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.4 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=6 \mathrm{~A} \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=6 \mathrm{~A} \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
I_{R}	Reverse Current	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{gathered} \hline 50 \\ 200 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V} \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=600 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{aligned}$	
Q_{C}	Total Capacitive Charge	16		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=6 \mathrm{~A} \\ & \mathrm{~d} i / \mathrm{d} t=500 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
C	Total Capacitance	$\begin{gathered} 294 \\ 27 \\ 26 \\ \hline \end{gathered}$		pF	$\begin{aligned} & V_{R}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=200 \mathrm{~V}_{1} \mathrm{~T}_{\mathrm{J}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	

Note:

1. This is a majority carrier diode, so there is no reverse recovery charge.

Thermal Characteristics

Symbol	Parameter	Typ.	Unit
$R_{\text {өлС }}$	Thermal Resistance from Junction to Case	1.65	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Typical Performance

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

Typical Performance

Figure 3. Current Derating

Figure 4. Capacitance vs. Reverse Voltage

Figure 5. Transient Thermal Impedance

Typical Performance

Figure 6. Power Derating

Package Dimensions

Package TO-263-2

PIN 1 O

POS	Inches		Millimeters	
	Min	Max	Min	Max
A	.396	.406	10.058	10.312
B	.295	.335	7.493	8.509
C	.05	.065	1.27	1.651
D	.25	.27	6.35	6.858
E *	0.00	.07	0.00	1.778
F	.048	.062	1.219	1.575
G	.100 TYP	2.540 TYP		
H	.35	.37	8.890	9.398
J	.028	.034	.711	.864
K	2°	5°	2°	5°
L	.170	.180	4.318	4.572
M	.045	.055	1.143	1.397
N	.595	.615	15.113	15.621
P	0.00	0.10	0.00	2.54
Q	R0.018	R0.022	R0.457	R0.559
R	.090	.110	2.286	2.794
S	.013	.02	.330	.508
T	6.5°	8.5°	6.5°	8.5°
U	.100	.107	2.540	2.718
W	-	5.0°	-	5.0°
TYP				

Note:

* Tab "E" may not be present

Recommended Solder Pad Layout

TO-263-2

Part Number	Package	Marking
C3D06060G	TO-263-2	C3D06060

Diode Model

$$
\begin{gathered}
\mathrm{Vf}_{\mathrm{T}}=\mathrm{V}_{\mathrm{T}}+\mathrm{If} * \mathrm{R}_{\mathrm{T}} \\
\mathrm{~V}_{\mathrm{T}=}=0.975+\left(\mathrm{T}_{\mathrm{j}} *-1.0^{*} * 10^{-3}\right) \\
\mathrm{R}_{\mathrm{T}=}=0.09+\left(\mathrm{T}_{\mathrm{j}} * 0.51 * 10^{-3}\right)
\end{gathered}
$$

Note: $\mathbf{T}_{\mathbf{j}}=$ Diode Junction Temperature In Degrees Celsius

 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoCS), as amended through April $21,2006$.

