

C2D20120D-Silicon Carbide Schottky Diode

ZERO RECOVERY® RECTIFIER

 $\mathbf{V}_{\mathsf{RRM}} = 1200 \ \mathsf{V}$

 $I_E = 20 A$

 $Q_c = 122 \text{ nC}$

Features

- 1200-Volt Schottky Rectifier
- Zero Reverse Recovery
- Zero Forward Recovery
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Swtitching
- Positive Temperature Coefficient on V_E

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

PIN 2O O CASE PIN 3O

Package

TO-247-3

Applications

- Switch Mode Power Supplies
- Power Factor Correction
- Motor Drives

Part Number	Package	Marking	
C2D20120D	TO-247-3	C2D20120	

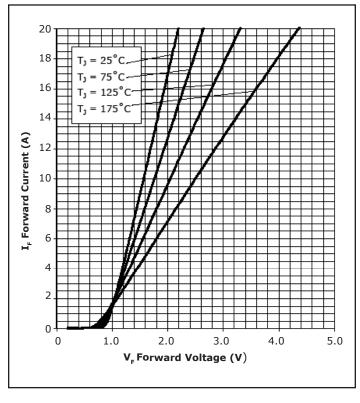
Maximum Ratings

Symbol	Parameter	Value	Unit	Test Conditions	Note
V _{RRM}	Repetitive Peak Reverse Voltage	1200	V		
V _{RSM}	Surge Peak Reverse Voltage	1200	V		
V _{DC}	DC Blocking Voltage	1200	V		
$I_{\scriptscriptstyle \sf F}$	Continuous Forward Current (Per Leg/Device)	10/20 17/34	А	T _c =150°C T _c =125°C	
$I_{\text{F(PEAK)}}$	Peak Forward Current (Per Leg/Device)	25/50	А	T _c =125°C, T _{REP} <1 mS, Duty=0.5	
\mathbf{I}_{FRM}	Repetitive Peak Forward Surge Current	50*	А	$T_c=25$ °C, $t_p=8.3$ ms, Half Sine Wave	
I_{FSM}	Non-Repetitive Peak Forward Surge Current	250*	А	$T_c=25$ °C, $t_p=10$ µs, Pulse	
P _{tot}	Power Dissipation (Per Leg)	312* 104*	W	T _c =25°C T _c =125°C	
T _J , T _{stg}	Operating Junction and Storage Temperature	-55 to +175	°C		
	TO-247 Mounting Torque	1 8.8	Nm lbf-in	M3 Screw 6-32 Screw	

^{**} Per Device, * Per Leg

Electrical Characteristics (Per Leg)

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V _F	Forward Voltage	1.6 2.5	1.8 3.0	V	$I_F = 10 \text{ A } T_J = 25^{\circ}\text{C}$ $I_F = 10 \text{ A } T_J = 175^{\circ}\text{C}$	
I_R	Reverse Current	10 20	200 1000	μΑ	$V_R = 1200 \text{ V } T_J = 25^{\circ}\text{C}$ $V_R = 1200 \text{ V } T_J = 175^{\circ}\text{C}$	
Q _c	Total Capacitive Charge	61		nC	$V_R = 1200 \text{ V, } I_F = 10\text{A}$ $di/dt = 500 \text{ A/}\mu\text{s}$ $T_J = 25^{\circ}\text{C}$	
С	Total Capacitance	1000 80 59		pF	$V_R = 0 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1 \text{ MHz}$ $V_R = 200 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1$ MHz $V_R = 400 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1$ MHz	


Note:


Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
$R_{_{ heta JC}}$	Thermal Resistance from Junction to Case	0.48** 0.24*		°C/W		

^{**} Per Leg, * Both Legs

Typical Performance (Per Leg)

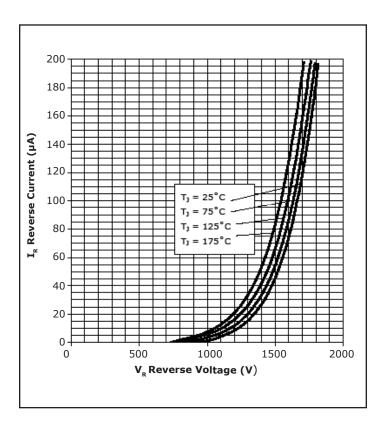
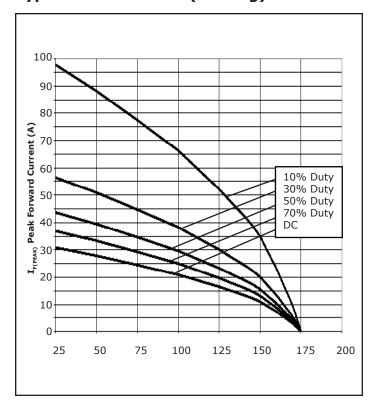



Figure 2. Reverse Characteristics

^{1.} This is a majority carrier diode, so there is no reverse recovery charge.

Typical Performance (Per Leg)

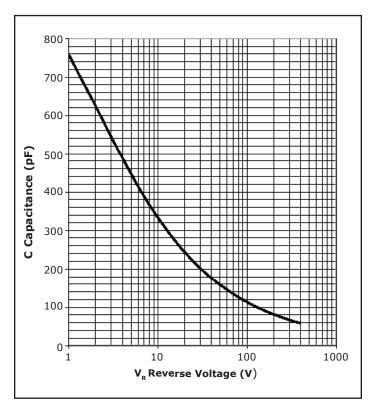
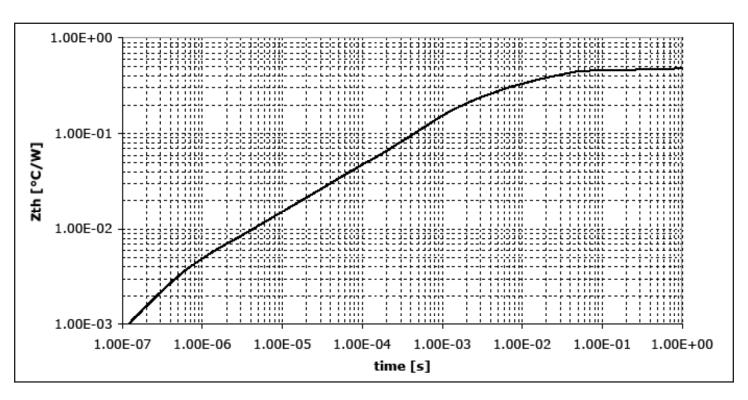
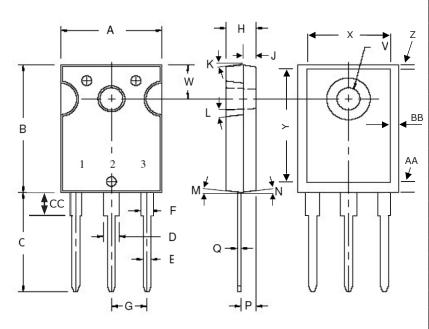
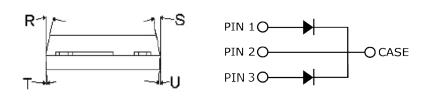


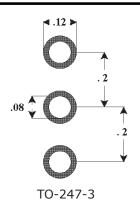
Figure 3. Current Derating

Figure 4. Capacitance vs. Reverse Voltage


Figure 5. Transient Thermal Impedance

Package Dimensions


Package TO-247-3

POS	Inc	hes	Millimeters		
P05	Min	Max	Min	Max	
А	.605	.635	15.367	16.130	
В	.800	.831	20.320	21.10	
С	.780	.800	19.810	20.320	
D	.095	.133	2.413	3.380	
E	.046	.052	1.168	1.321	
F	.060	.095	1.524	2.410	
G	.215	TYP	5.460) TYP	
Н	.175	.205	4.450	5.210	
J	.075	.085	1.910	2.160	
K	6°	21°	6°	21°	
L	4°	6°	4°	6°	
М	2°	4°	2°	4°	
N	2°	4°	2°	4°	
Р	.090	.100	2.286	2.540	
Q	.020	.030	.508	.762	
R	9°	11°	9°	11°	
S	9°	11°	9°	11°	
Т	2°	8°	2°	8°	
U	2°	8°	2°	8°	
V	.137	.144	3.487	3.658	
W	.210	.248	5.334	6.300	
X	.502	.557	12.751	14.150	
Y	.637	.695	16.180	17.653	
Z	.038	.052	0.964	1.321	
AA	.110	.140	2.794	3.556	
BB	.030	.046	0.766	1.168	
CC	.161	.176	4.100	4.472	

Recommended Solder Pad Layout

Part Number	Package	Marking	
C2D20120D	TO-247-3	C2D20120	

"The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent organic pollutants (POP), or otherwise restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April 21, 2006."

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems, or weapons systems.

Copyright © 2006-2012 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.